root commited on
Commit
bb81e27
·
1 Parent(s): 1451270

update model files

Browse files
config.json CHANGED
@@ -3,6 +3,9 @@
3
  "architectures": [
4
  "GPT2LMHeadModel"
5
  ],
 
 
 
6
  "attn_pdrop": 0.0,
7
  "bos_token_id": 255999,
8
  "embd_pdrop": 0.0,
@@ -10,6 +13,7 @@
10
  "initializer_range": 0.02,
11
  "layer_norm_epsilon": 1e-05,
12
  "model_type": "gpt2",
 
13
  "n_embd": 5120,
14
  "n_head": 40,
15
  "n_inner": 20480,
@@ -25,7 +29,7 @@
25
  "summary_type": "cls_index",
26
  "summary_use_proj": true,
27
  "tokenizer_class": "AutoTokenizer",
28
- "transformers_version": "4.29.2",
29
  "use_cache": true,
30
  "vocab_size": 256000
31
  }
 
3
  "architectures": [
4
  "GPT2LMHeadModel"
5
  ],
6
+ "auto_map": {
7
+ "AutoModelForCausalLM": "modeling_polylm.PolyLMHeadModel"
8
+ },
9
  "attn_pdrop": 0.0,
10
  "bos_token_id": 255999,
11
  "embd_pdrop": 0.0,
 
13
  "initializer_range": 0.02,
14
  "layer_norm_epsilon": 1e-05,
15
  "model_type": "gpt2",
16
+ "n_ctx": 2048,
17
  "n_embd": 5120,
18
  "n_head": 40,
19
  "n_inner": 20480,
 
29
  "summary_type": "cls_index",
30
  "summary_use_proj": true,
31
  "tokenizer_class": "AutoTokenizer",
32
+ "transformers_version": "4.31.0",
33
  "use_cache": true,
34
  "vocab_size": 256000
35
  }
modeling_polylm.py ADDED
@@ -0,0 +1,1085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """DAMO PolyLM model (adapted from the modeling_gpt2.py script)"""
17
+
18
+ import math
19
+ import os
20
+ import warnings
21
+ from dataclasses import dataclass
22
+ from typing import Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.cuda.amp import autocast
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPastAndCrossAttentions,
33
+ CausalLMOutputWithCrossAttentions,
34
+ QuestionAnsweringModelOutput,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel, SequenceSummary
39
+ from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
40
+ from transformers.utils import (
41
+ ModelOutput,
42
+ add_code_sample_docstrings,
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ logging,
46
+ replace_return_docstrings,
47
+ )
48
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
49
+ from transformers.models.gpt2.configuration_gpt2 import GPT2Config
50
+
51
+
52
+ logger = logging.get_logger(__name__)
53
+
54
+ _CHECKPOINT_FOR_DOC = "gpt2"
55
+ _CONFIG_FOR_DOC = "GPT2Config"
56
+
57
+
58
+ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
59
+ """Load tf checkpoints in a pytorch model"""
60
+ try:
61
+ import re
62
+
63
+ import tensorflow as tf
64
+ except ImportError:
65
+ logger.error(
66
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
67
+ "https://www.tensorflow.org/install/ for installation instructions."
68
+ )
69
+ raise
70
+ tf_path = os.path.abspath(gpt2_checkpoint_path)
71
+ logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
72
+ # Load weights from TF model
73
+ init_vars = tf.train.list_variables(tf_path)
74
+ names = []
75
+ arrays = []
76
+ for name, shape in init_vars:
77
+ logger.info(f"Loading TF weight {name} with shape {shape}")
78
+ array = tf.train.load_variable(tf_path, name)
79
+ names.append(name)
80
+ arrays.append(array.squeeze())
81
+
82
+ for name, array in zip(names, arrays):
83
+ name = name[6:] # skip "model/"
84
+ name = name.split("/")
85
+ pointer = model
86
+ for m_name in name:
87
+ if re.fullmatch(r"[A-Za-z]+\d+", m_name):
88
+ scope_names = re.split(r"(\d+)", m_name)
89
+ else:
90
+ scope_names = [m_name]
91
+ if scope_names[0] == "w" or scope_names[0] == "g":
92
+ pointer = getattr(pointer, "weight")
93
+ elif scope_names[0] == "b":
94
+ pointer = getattr(pointer, "bias")
95
+ elif scope_names[0] == "wpe" or scope_names[0] == "wte":
96
+ pointer = getattr(pointer, scope_names[0])
97
+ pointer = getattr(pointer, "weight")
98
+ else:
99
+ pointer = getattr(pointer, scope_names[0])
100
+ if len(scope_names) >= 2:
101
+ num = int(scope_names[1])
102
+ pointer = pointer[num]
103
+ try:
104
+ if pointer.shape != array.shape:
105
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
106
+ except ValueError as e:
107
+ e.args += (pointer.shape, array.shape)
108
+ raise
109
+ logger.info(f"Initialize PyTorch weight {name}")
110
+ pointer.data = torch.from_numpy(array)
111
+ return model
112
+
113
+
114
+ class Attention(nn.Module):
115
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
116
+ super().__init__()
117
+
118
+ max_positions = config.max_position_embeddings
119
+ self.register_buffer(
120
+ "bias",
121
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
122
+ 1, 1, max_positions, max_positions
123
+ ),
124
+ persistent=False,
125
+ )
126
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
127
+
128
+ self.embed_dim = config.hidden_size
129
+ self.num_heads = config.num_attention_heads
130
+ self.head_dim = self.embed_dim // self.num_heads
131
+ self.split_size = self.embed_dim
132
+ if self.head_dim * self.num_heads != self.embed_dim:
133
+ raise ValueError(
134
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
135
+ f" {self.num_heads})."
136
+ )
137
+
138
+ self.scale_attn_weights = config.scale_attn_weights
139
+ self.is_cross_attention = is_cross_attention
140
+
141
+ # Layer-wise attention scaling, reordering, and upcasting
142
+ self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
143
+ self.layer_idx = layer_idx
144
+ self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
145
+
146
+ if self.is_cross_attention:
147
+ self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim)
148
+ self.q_attn = nn.Linear(self.embed_dim, self.embed_dim)
149
+ else:
150
+ self.c_attn = nn.Linear(self.embed_dim, 3 * self.embed_dim)
151
+ self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
152
+
153
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
154
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
155
+
156
+ self.pruned_heads = set()
157
+
158
+ def prune_heads(self, heads):
159
+ if len(heads) == 0:
160
+ return
161
+ heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
162
+ index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
163
+
164
+ # Prune conv1d layers
165
+ self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
166
+ self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
167
+
168
+ # Update hyper params
169
+ self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
170
+ self.num_heads = self.num_heads - len(heads)
171
+ self.pruned_heads = self.pruned_heads.union(heads)
172
+
173
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
174
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
175
+
176
+ if self.scale_attn_weights:
177
+ attn_weights = attn_weights / torch.full(
178
+ [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
179
+ )
180
+
181
+ # Layer-wise attention scaling
182
+ if self.scale_attn_by_inverse_layer_idx:
183
+ attn_weights = attn_weights / float(self.layer_idx + 1)
184
+
185
+ if not self.is_cross_attention:
186
+ # if only "normal" attention layer implements causal mask
187
+ query_length, key_length = query.size(-2), key.size(-2)
188
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
189
+ mask_value = torch.finfo(attn_weights.dtype).min
190
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
191
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
192
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
193
+ attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
194
+
195
+ if attention_mask is not None:
196
+ # Apply the attention mask
197
+ attn_weights = attn_weights + attention_mask
198
+
199
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
200
+
201
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
202
+ attn_weights = attn_weights.type(value.dtype)
203
+ attn_weights = self.attn_dropout(attn_weights)
204
+
205
+ # Mask heads if we want to
206
+ if head_mask is not None:
207
+ attn_weights = attn_weights * head_mask
208
+
209
+ attn_output = torch.matmul(attn_weights, value)
210
+
211
+ return attn_output, attn_weights
212
+
213
+ def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
214
+ # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
215
+ bsz, num_heads, q_seq_len, dk = query.size()
216
+ _, _, k_seq_len, _ = key.size()
217
+
218
+ # Preallocate attn_weights for `baddbmm`
219
+ attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
220
+
221
+ # Compute Scale Factor
222
+ scale_factor = 1.0
223
+ if self.scale_attn_weights:
224
+ scale_factor /= float(value.size(-1)) ** 0.5
225
+
226
+ if self.scale_attn_by_inverse_layer_idx:
227
+ scale_factor /= float(self.layer_idx + 1)
228
+
229
+ # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
230
+ with autocast(enabled=False):
231
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
232
+ attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
233
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
234
+
235
+ if not self.is_cross_attention:
236
+ # if only "normal" attention layer implements causal mask
237
+ query_length, key_length = query.size(-2), key.size(-2)
238
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
239
+ mask_value = torch.finfo(attn_weights.dtype).min
240
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
241
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
242
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
243
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
244
+
245
+ if attention_mask is not None:
246
+ # Apply the attention mask
247
+ attn_weights = attn_weights + attention_mask
248
+
249
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
250
+
251
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
252
+ if attn_weights.dtype != torch.float32:
253
+ raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
254
+ attn_weights = attn_weights.type(value.dtype)
255
+ attn_weights = self.attn_dropout(attn_weights)
256
+
257
+ # Mask heads if we want to
258
+ if head_mask is not None:
259
+ attn_weights = attn_weights * head_mask
260
+
261
+ attn_output = torch.matmul(attn_weights, value)
262
+
263
+ return attn_output, attn_weights
264
+
265
+ def _split_heads(self, tensor, num_heads, attn_head_size):
266
+ """
267
+ Splits hidden_size dim into attn_head_size and num_heads
268
+ """
269
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
270
+ tensor = tensor.view(new_shape)
271
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
272
+
273
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
274
+ """
275
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
276
+ """
277
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
278
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
279
+ return tensor.view(new_shape)
280
+
281
+ def forward(
282
+ self,
283
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
284
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
285
+ attention_mask: Optional[torch.FloatTensor] = None,
286
+ head_mask: Optional[torch.FloatTensor] = None,
287
+ encoder_hidden_states: Optional[torch.Tensor] = None,
288
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
289
+ use_cache: Optional[bool] = False,
290
+ output_attentions: Optional[bool] = False,
291
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
292
+ if encoder_hidden_states is not None:
293
+ if not hasattr(self, "q_attn"):
294
+ raise ValueError(
295
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
296
+ "Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`."
297
+ )
298
+
299
+ query = self.q_attn(hidden_states)
300
+ key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
301
+ attention_mask = encoder_attention_mask
302
+ else:
303
+ query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
304
+
305
+ query = self._split_heads(query, self.num_heads, self.head_dim)
306
+ key = self._split_heads(key, self.num_heads, self.head_dim)
307
+ value = self._split_heads(value, self.num_heads, self.head_dim)
308
+
309
+ if layer_past is not None:
310
+ past_key, past_value = layer_past
311
+ key = torch.cat((past_key, key), dim=-2)
312
+ value = torch.cat((past_value, value), dim=-2)
313
+
314
+ if use_cache is True:
315
+ present = (key, value)
316
+ else:
317
+ present = None
318
+
319
+ if self.reorder_and_upcast_attn:
320
+ attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
321
+ else:
322
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
323
+
324
+ attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
325
+ attn_output = self.c_proj(attn_output)
326
+ attn_output = self.resid_dropout(attn_output)
327
+
328
+ outputs = (attn_output, present)
329
+ if output_attentions:
330
+ outputs += (attn_weights,)
331
+
332
+ return outputs # a, present, (attentions)
333
+
334
+
335
+ class MLP(nn.Module):
336
+ def __init__(self, intermediate_size, config):
337
+ super().__init__()
338
+ embed_dim = config.hidden_size
339
+ self.c_fc = nn.Linear(embed_dim, intermediate_size)
340
+ self.c_proj = nn.Linear(intermediate_size, embed_dim)
341
+ self.act = ACT2FN[config.activation_function]
342
+ self.dropout = nn.Dropout(config.resid_pdrop)
343
+
344
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
345
+ hidden_states = self.c_fc(hidden_states)
346
+ hidden_states = self.act(hidden_states)
347
+ hidden_states = self.c_proj(hidden_states)
348
+ hidden_states = self.dropout(hidden_states)
349
+ return hidden_states
350
+
351
+
352
+ class PolyLMBlock(nn.Module):
353
+ def __init__(self, config, layer_idx=None):
354
+ super().__init__()
355
+ hidden_size = config.hidden_size
356
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
357
+
358
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
359
+ self.attn = Attention(config, layer_idx=layer_idx)
360
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
361
+
362
+ if config.add_cross_attention:
363
+ self.crossattention = Attention(config, is_cross_attention=True, layer_idx=layer_idx)
364
+ self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
365
+
366
+ self.mlp = MLP(inner_dim, config)
367
+
368
+ def forward(
369
+ self,
370
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
371
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
372
+ attention_mask: Optional[torch.FloatTensor] = None,
373
+ head_mask: Optional[torch.FloatTensor] = None,
374
+ encoder_hidden_states: Optional[torch.Tensor] = None,
375
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
376
+ use_cache: Optional[bool] = False,
377
+ output_attentions: Optional[bool] = False,
378
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
379
+ residual = hidden_states
380
+ hidden_states = self.ln_1(hidden_states)
381
+ attn_outputs = self.attn(
382
+ hidden_states,
383
+ layer_past=layer_past,
384
+ attention_mask=attention_mask,
385
+ head_mask=head_mask,
386
+ use_cache=use_cache,
387
+ output_attentions=output_attentions,
388
+ )
389
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
390
+ outputs = attn_outputs[1:]
391
+ # residual connection
392
+ hidden_states = attn_output + residual
393
+
394
+ if encoder_hidden_states is not None:
395
+ # add one self-attention block for cross-attention
396
+ if not hasattr(self, "crossattention"):
397
+ raise ValueError(
398
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
399
+ "cross-attention layers by setting `config.add_cross_attention=True`"
400
+ )
401
+ residual = hidden_states
402
+ hidden_states = self.ln_cross_attn(hidden_states)
403
+ cross_attn_outputs = self.crossattention(
404
+ hidden_states,
405
+ attention_mask=attention_mask,
406
+ head_mask=head_mask,
407
+ encoder_hidden_states=encoder_hidden_states,
408
+ encoder_attention_mask=encoder_attention_mask,
409
+ output_attentions=output_attentions,
410
+ )
411
+ attn_output = cross_attn_outputs[0]
412
+ # residual connection
413
+ hidden_states = residual + attn_output
414
+ outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
415
+
416
+ residual = hidden_states
417
+ hidden_states = self.ln_2(hidden_states)
418
+ feed_forward_hidden_states = self.mlp(hidden_states)
419
+ # residual connection
420
+ hidden_states = residual + feed_forward_hidden_states
421
+
422
+ if use_cache:
423
+ outputs = (hidden_states,) + outputs
424
+ else:
425
+ outputs = (hidden_states,) + outputs[1:]
426
+
427
+ return outputs # hidden_states, present, (attentions, cross_attentions)
428
+
429
+
430
+ class PolyLMPreTrainedModel(PreTrainedModel):
431
+ """
432
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
433
+ models.
434
+ """
435
+
436
+ config_class = GPT2Config
437
+ load_tf_weights = load_tf_weights_in_gpt2
438
+ base_model_prefix = "transformer"
439
+ is_parallelizable = True
440
+ supports_gradient_checkpointing = True
441
+ _no_split_modules = ["PolyLMBlock"]
442
+ _skip_keys_device_placement = "past_key_values"
443
+
444
+ def __init__(self, *inputs, **kwargs):
445
+ super().__init__(*inputs, **kwargs)
446
+
447
+ def _init_weights(self, module):
448
+ """Initialize the weights."""
449
+ if isinstance(module, (nn.Linear, Conv1D)):
450
+ # Slightly different from the TF version which uses truncated_normal for initialization
451
+ # cf https://github.com/pytorch/pytorch/pull/5617
452
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
453
+ if module.bias is not None:
454
+ module.bias.data.zero_()
455
+ elif isinstance(module, nn.Embedding):
456
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
457
+ if module.padding_idx is not None:
458
+ module.weight.data[module.padding_idx].zero_()
459
+ elif isinstance(module, nn.LayerNorm):
460
+ module.bias.data.zero_()
461
+ module.weight.data.fill_(1.0)
462
+
463
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
464
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
465
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
466
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
467
+ #
468
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
469
+ for name, p in module.named_parameters():
470
+ if name == "c_proj.weight":
471
+ # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
472
+ p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
473
+
474
+ def _set_gradient_checkpointing(self, module, value=False):
475
+ if isinstance(module, PolyLMModel):
476
+ module.gradient_checkpointing = value
477
+
478
+
479
+
480
+ GPT2_START_DOCSTRING = r"""
481
+
482
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
483
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
484
+ etc.)
485
+
486
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
487
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
488
+ and behavior.
489
+
490
+ Parameters:
491
+ config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
492
+ Initializing with a config file does not load the weights associated with the model, only the
493
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
494
+ """
495
+
496
+ GPT2_INPUTS_DOCSTRING = r"""
497
+ Args:
498
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
499
+ `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
500
+ `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
501
+ sequence tokens in the vocabulary.
502
+
503
+ If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
504
+ `input_ids`.
505
+
506
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
507
+ [`PreTrainedTokenizer.__call__`] for details.
508
+
509
+ [What are input IDs?](../glossary#input-ids)
510
+ past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
511
+ Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
512
+ `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
513
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
514
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
515
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
516
+
517
+ - 1 for tokens that are **not masked**,
518
+ - 0 for tokens that are **masked**.
519
+
520
+ If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
521
+ `past_key_values`. In other words, the `attention_mask` always has to have the length:
522
+ `len(past_key_values) + len(input_ids)`
523
+
524
+ [What are attention masks?](../glossary#attention-mask)
525
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
526
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
527
+ 1]`:
528
+
529
+ - 0 corresponds to a *sentence A* token,
530
+ - 1 corresponds to a *sentence B* token.
531
+
532
+ [What are token type IDs?](../glossary#token-type-ids)
533
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
534
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
535
+ config.max_position_embeddings - 1]`.
536
+
537
+ [What are position IDs?](../glossary#position-ids)
538
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
539
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
540
+
541
+ - 1 indicates the head is **not masked**,
542
+ - 0 indicates the head is **masked**.
543
+
544
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
545
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
546
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
547
+ model's internal embedding lookup matrix.
548
+
549
+ If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
550
+ `past_key_values`).
551
+ use_cache (`bool`, *optional*):
552
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
553
+ `past_key_values`).
554
+ output_attentions (`bool`, *optional*):
555
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
556
+ tensors for more detail.
557
+ output_hidden_states (`bool`, *optional*):
558
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
559
+ more detail.
560
+ return_dict (`bool`, *optional*):
561
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
562
+ """
563
+ PARALLELIZE_DOCSTRING = r"""
564
+ This is an experimental feature and is a subject to change at a moment's notice.
565
+
566
+ Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
567
+ it will evenly distribute blocks across all devices.
568
+
569
+ Args:
570
+ device_map (`Dict[int, list]`, optional, defaults to None):
571
+ A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
572
+ automatically mapped to the first device (for esoteric reasons). That means that the first device should
573
+ have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
574
+ following number of attention modules:
575
+
576
+ - gpt2: 12
577
+ - gpt2-medium: 24
578
+ - gpt2-large: 36
579
+ - gpt2-xl: 48
580
+
581
+ Example:
582
+
583
+ ```python
584
+ # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
585
+ model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
586
+ device_map = {
587
+ 0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
588
+ 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
589
+ 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
590
+ 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
591
+ }
592
+ model.parallelize(device_map)
593
+ ```
594
+ """
595
+ DEPARALLELIZE_DOCSTRING = r"""
596
+ Moves the model to cpu from a model parallel state.
597
+
598
+ Example:
599
+
600
+ ```python
601
+ # On a 4 GPU machine with gpt2-large:
602
+ model = GPT2LMHeadModel.from_pretrained("gpt2-large")
603
+ device_map = {
604
+ 0: [0, 1, 2, 3, 4, 5, 6, 7],
605
+ 1: [8, 9, 10, 11, 12, 13, 14, 15],
606
+ 2: [16, 17, 18, 19, 20, 21, 22, 23],
607
+ 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
608
+ }
609
+ model.parallelize(device_map) # Splits the model across several devices
610
+ model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
611
+ ```
612
+ """
613
+
614
+
615
+ @add_start_docstrings(
616
+ "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
617
+ GPT2_START_DOCSTRING,
618
+ )
619
+ class PolyLMModel(PolyLMPreTrainedModel):
620
+ def __init__(self, config):
621
+ super().__init__(config)
622
+
623
+ self.embed_dim = config.hidden_size
624
+
625
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
626
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
627
+
628
+ self.drop = nn.Dropout(config.embd_pdrop)
629
+ self.h = nn.ModuleList([PolyLMBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
630
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
631
+
632
+ # Model parallel
633
+ self.model_parallel = False
634
+ self.device_map = None
635
+ self.gradient_checkpointing = False
636
+
637
+ # Initialize weights and apply final processing
638
+ self.post_init()
639
+
640
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
641
+ def parallelize(self, device_map=None):
642
+ # Check validity of device_map
643
+ warnings.warn(
644
+ "`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
645
+ " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
646
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
647
+ " ...}",
648
+ FutureWarning,
649
+ )
650
+ self.device_map = (
651
+ get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
652
+ )
653
+ assert_device_map(self.device_map, len(self.h))
654
+ self.model_parallel = True
655
+ self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
656
+ self.last_device = "cuda:" + str(max(self.device_map.keys()))
657
+ self.wte = self.wte.to(self.first_device)
658
+ self.wpe = self.wpe.to(self.first_device)
659
+ # Load onto devices
660
+ for k, v in self.device_map.items():
661
+ for block in v:
662
+ cuda_device = "cuda:" + str(k)
663
+ self.h[block] = self.h[block].to(cuda_device)
664
+ # ln_f to last
665
+ self.ln_f = self.ln_f.to(self.last_device)
666
+
667
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
668
+ def deparallelize(self):
669
+ warnings.warn(
670
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
671
+ FutureWarning,
672
+ )
673
+ self.model_parallel = False
674
+ self.device_map = None
675
+ self.first_device = "cpu"
676
+ self.last_device = "cpu"
677
+ self.wte = self.wte.to("cpu")
678
+ self.wpe = self.wpe.to("cpu")
679
+ for index in range(len(self.h)):
680
+ self.h[index] = self.h[index].to("cpu")
681
+ self.ln_f = self.ln_f.to("cpu")
682
+ torch.cuda.empty_cache()
683
+
684
+ def get_input_embeddings(self):
685
+ return self.wte
686
+
687
+ def set_input_embeddings(self, new_embeddings):
688
+ self.wte = new_embeddings
689
+
690
+ def _prune_heads(self, heads_to_prune):
691
+ """
692
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
693
+ """
694
+ for layer, heads in heads_to_prune.items():
695
+ self.h[layer].attn.prune_heads(heads)
696
+
697
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
698
+ @add_code_sample_docstrings(
699
+ checkpoint=_CHECKPOINT_FOR_DOC,
700
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
701
+ config_class=_CONFIG_FOR_DOC,
702
+ )
703
+ def forward(
704
+ self,
705
+ input_ids: Optional[torch.LongTensor] = None,
706
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
707
+ attention_mask: Optional[torch.FloatTensor] = None,
708
+ token_type_ids: Optional[torch.LongTensor] = None,
709
+ position_ids: Optional[torch.LongTensor] = None,
710
+ head_mask: Optional[torch.FloatTensor] = None,
711
+ inputs_embeds: Optional[torch.FloatTensor] = None,
712
+ encoder_hidden_states: Optional[torch.Tensor] = None,
713
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
714
+ use_cache: Optional[bool] = None,
715
+ output_attentions: Optional[bool] = None,
716
+ output_hidden_states: Optional[bool] = None,
717
+ return_dict: Optional[bool] = None,
718
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
719
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
720
+ output_hidden_states = (
721
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
722
+ )
723
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
724
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
725
+
726
+ if input_ids is not None and inputs_embeds is not None:
727
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
728
+ elif input_ids is not None:
729
+ input_shape = input_ids.size()
730
+ input_ids = input_ids.view(-1, input_shape[-1])
731
+ batch_size = input_ids.shape[0]
732
+ elif inputs_embeds is not None:
733
+ input_shape = inputs_embeds.size()[:-1]
734
+ batch_size = inputs_embeds.shape[0]
735
+ else:
736
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
737
+
738
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
739
+
740
+ if token_type_ids is not None:
741
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
742
+ if position_ids is not None:
743
+ position_ids = position_ids.view(-1, input_shape[-1])
744
+
745
+ if past_key_values is None:
746
+ past_length = 0
747
+ past_key_values = tuple([None] * len(self.h))
748
+ else:
749
+ past_length = past_key_values[0][0].size(-2)
750
+ if position_ids is None:
751
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
752
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
753
+
754
+ # Attention mask.
755
+ if attention_mask is not None:
756
+ if batch_size <= 0:
757
+ raise ValueError("batch_size has to be defined and > 0")
758
+ attention_mask = attention_mask.view(batch_size, -1)
759
+ # We create a 3D attention mask from a 2D tensor mask.
760
+ # Sizes are [batch_size, 1, 1, to_seq_length]
761
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
762
+ # this attention mask is more simple than the triangular masking of causal attention
763
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
764
+ attention_mask = attention_mask[:, None, None, :]
765
+
766
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
767
+ # masked positions, this operation will create a tensor which is 0.0 for
768
+ # positions we want to attend and the dtype's smallest value for masked positions.
769
+ # Since we are adding it to the raw scores before the softmax, this is
770
+ # effectively the same as removing these entirely.
771
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
772
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
773
+
774
+ # If a 2D or 3D attention mask is provided for the cross-attention
775
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
776
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
777
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
778
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
779
+ if encoder_attention_mask is None:
780
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
781
+ encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
782
+ else:
783
+ encoder_attention_mask = None
784
+
785
+ # Prepare head mask if needed
786
+ # 1.0 in head_mask indicate we keep the head
787
+ # attention_probs has shape bsz x n_heads x N x N
788
+ # head_mask has shape n_layer x batch x n_heads x N x N
789
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
790
+
791
+ if inputs_embeds is None:
792
+ inputs_embeds = self.wte(input_ids)
793
+ position_embeds = self.wpe(position_ids)
794
+ hidden_states = inputs_embeds + position_embeds
795
+
796
+ if token_type_ids is not None:
797
+ token_type_embeds = self.wte(token_type_ids)
798
+ hidden_states = hidden_states + token_type_embeds
799
+
800
+ hidden_states = self.drop(hidden_states)
801
+
802
+ output_shape = input_shape + (hidden_states.size(-1),)
803
+
804
+ if self.gradient_checkpointing and self.training:
805
+ if use_cache:
806
+ logger.warning_once(
807
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
808
+ )
809
+ use_cache = False
810
+
811
+ presents = () if use_cache else None
812
+ all_self_attentions = () if output_attentions else None
813
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
814
+ all_hidden_states = () if output_hidden_states else None
815
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
816
+ # Model parallel
817
+ if self.model_parallel:
818
+ torch.cuda.set_device(hidden_states.device)
819
+ # Ensure layer_past is on same device as hidden_states (might not be correct)
820
+ if layer_past is not None:
821
+ layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
822
+ # Ensure that attention_mask is always on the same device as hidden_states
823
+ if attention_mask is not None:
824
+ attention_mask = attention_mask.to(hidden_states.device)
825
+ if isinstance(head_mask, torch.Tensor):
826
+ head_mask = head_mask.to(hidden_states.device)
827
+ if output_hidden_states:
828
+ all_hidden_states = all_hidden_states + (hidden_states,)
829
+
830
+ if self.gradient_checkpointing and self.training:
831
+
832
+ def create_custom_forward(module):
833
+ def custom_forward(*inputs):
834
+ # None for past_key_value
835
+ return module(*inputs, use_cache, output_attentions)
836
+
837
+ return custom_forward
838
+
839
+ outputs = torch.utils.checkpoint.checkpoint(
840
+ create_custom_forward(block),
841
+ hidden_states,
842
+ None,
843
+ attention_mask,
844
+ head_mask[i],
845
+ encoder_hidden_states,
846
+ encoder_attention_mask,
847
+ )
848
+ else:
849
+ outputs = block(
850
+ hidden_states,
851
+ layer_past=layer_past,
852
+ attention_mask=attention_mask,
853
+ head_mask=head_mask[i],
854
+ encoder_hidden_states=encoder_hidden_states,
855
+ encoder_attention_mask=encoder_attention_mask,
856
+ use_cache=use_cache,
857
+ output_attentions=output_attentions,
858
+ )
859
+
860
+ hidden_states = outputs[0]
861
+ if use_cache is True:
862
+ presents = presents + (outputs[1],)
863
+
864
+ if output_attentions:
865
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
866
+ if self.config.add_cross_attention:
867
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
868
+
869
+ # Model Parallel: If it's the last layer for that device, put things on the next device
870
+ if self.model_parallel:
871
+ for k, v in self.device_map.items():
872
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
873
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
874
+
875
+ hidden_states = self.ln_f(hidden_states)
876
+
877
+ hidden_states = hidden_states.view(output_shape)
878
+ # Add last hidden state
879
+ if output_hidden_states:
880
+ all_hidden_states = all_hidden_states + (hidden_states,)
881
+
882
+ if not return_dict:
883
+ return tuple(
884
+ v
885
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
886
+ if v is not None
887
+ )
888
+
889
+ return BaseModelOutputWithPastAndCrossAttentions(
890
+ last_hidden_state=hidden_states,
891
+ past_key_values=presents,
892
+ hidden_states=all_hidden_states,
893
+ attentions=all_self_attentions,
894
+ cross_attentions=all_cross_attentions,
895
+ )
896
+
897
+
898
+ @add_start_docstrings(
899
+ """
900
+ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
901
+ embeddings).
902
+ """,
903
+ GPT2_START_DOCSTRING,
904
+ )
905
+ class PolyLMHeadModel(PolyLMPreTrainedModel):
906
+ _tied_weights_keys = ["lm_head.weight"]
907
+
908
+ def __init__(self, config):
909
+ super().__init__(config)
910
+ self.transformer = PolyLMModel(config)
911
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
912
+
913
+ # Model parallel
914
+ self.model_parallel = False
915
+ self.device_map = None
916
+
917
+ # Initialize weights and apply final processing
918
+ self.post_init()
919
+
920
+ @add_start_docstrings(PARALLELIZE_DOCSTRING)
921
+ def parallelize(self, device_map=None):
922
+ warnings.warn(
923
+ "`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
924
+ " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
925
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
926
+ " 0, 'transformer.h.1': 1, ...}",
927
+ FutureWarning,
928
+ )
929
+ self.device_map = (
930
+ get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
931
+ if device_map is None
932
+ else device_map
933
+ )
934
+ assert_device_map(self.device_map, len(self.transformer.h))
935
+ self.transformer.parallelize(self.device_map)
936
+ self.lm_head = self.lm_head.to(self.transformer.first_device)
937
+ self.model_parallel = True
938
+
939
+ @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
940
+ def deparallelize(self):
941
+ warnings.warn(
942
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
943
+ FutureWarning,
944
+ )
945
+ self.transformer.deparallelize()
946
+ self.transformer = self.transformer.to("cpu")
947
+ self.lm_head = self.lm_head.to("cpu")
948
+ self.model_parallel = False
949
+ torch.cuda.empty_cache()
950
+
951
+ def get_output_embeddings(self):
952
+ return self.lm_head
953
+
954
+ def set_output_embeddings(self, new_embeddings):
955
+ self.lm_head = new_embeddings
956
+
957
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
958
+ token_type_ids = kwargs.get("token_type_ids", None)
959
+ # only last token for inputs_ids if past is defined in kwargs
960
+ if past_key_values:
961
+ input_ids = input_ids[:, -1].unsqueeze(-1)
962
+ if token_type_ids is not None:
963
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
964
+
965
+ attention_mask = kwargs.get("attention_mask", None)
966
+ position_ids = kwargs.get("position_ids", None)
967
+
968
+ if attention_mask is not None and position_ids is None:
969
+ # create position_ids on the fly for batch generation
970
+ position_ids = attention_mask.long().cumsum(-1) - 1
971
+ position_ids.masked_fill_(attention_mask == 0, 1)
972
+ if past_key_values:
973
+ position_ids = position_ids[:, -1].unsqueeze(-1)
974
+ else:
975
+ position_ids = None
976
+
977
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
978
+ if inputs_embeds is not None and past_key_values is None:
979
+ model_inputs = {"inputs_embeds": inputs_embeds}
980
+ else:
981
+ model_inputs = {"input_ids": input_ids}
982
+
983
+ model_inputs.update(
984
+ {
985
+ "past_key_values": past_key_values,
986
+ "use_cache": kwargs.get("use_cache"),
987
+ "position_ids": position_ids,
988
+ "attention_mask": attention_mask,
989
+ "token_type_ids": token_type_ids,
990
+ }
991
+ )
992
+ return model_inputs
993
+
994
+ @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
995
+ @add_code_sample_docstrings(
996
+ checkpoint=_CHECKPOINT_FOR_DOC,
997
+ output_type=CausalLMOutputWithCrossAttentions,
998
+ config_class=_CONFIG_FOR_DOC,
999
+ )
1000
+ def forward(
1001
+ self,
1002
+ input_ids: Optional[torch.LongTensor] = None,
1003
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1004
+ attention_mask: Optional[torch.FloatTensor] = None,
1005
+ token_type_ids: Optional[torch.LongTensor] = None,
1006
+ position_ids: Optional[torch.LongTensor] = None,
1007
+ head_mask: Optional[torch.FloatTensor] = None,
1008
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1009
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1010
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1011
+ labels: Optional[torch.LongTensor] = None,
1012
+ use_cache: Optional[bool] = None,
1013
+ output_attentions: Optional[bool] = None,
1014
+ output_hidden_states: Optional[bool] = None,
1015
+ return_dict: Optional[bool] = None,
1016
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1017
+ r"""
1018
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1019
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1020
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1021
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1022
+ """
1023
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1024
+
1025
+ transformer_outputs = self.transformer(
1026
+ input_ids,
1027
+ past_key_values=past_key_values,
1028
+ attention_mask=attention_mask,
1029
+ token_type_ids=token_type_ids,
1030
+ position_ids=position_ids,
1031
+ head_mask=head_mask,
1032
+ inputs_embeds=inputs_embeds,
1033
+ encoder_hidden_states=encoder_hidden_states,
1034
+ encoder_attention_mask=encoder_attention_mask,
1035
+ use_cache=use_cache,
1036
+ output_attentions=output_attentions,
1037
+ output_hidden_states=output_hidden_states,
1038
+ return_dict=return_dict,
1039
+ )
1040
+ hidden_states = transformer_outputs[0]
1041
+
1042
+ # Set device for model parallelism
1043
+ if self.model_parallel:
1044
+ torch.cuda.set_device(self.transformer.first_device)
1045
+ hidden_states = hidden_states.to(self.lm_head.weight.device)
1046
+
1047
+ lm_logits = self.lm_head(hidden_states)
1048
+
1049
+ loss = None
1050
+ if labels is not None:
1051
+ # move labels to correct device to enable model parallelism
1052
+ labels = labels.to(lm_logits.device)
1053
+ # Shift so that tokens < n predict n
1054
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1055
+ shift_labels = labels[..., 1:].contiguous()
1056
+ # Flatten the tokens
1057
+ loss_fct = CrossEntropyLoss()
1058
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1059
+
1060
+ if not return_dict:
1061
+ output = (lm_logits,) + transformer_outputs[1:]
1062
+ return ((loss,) + output) if loss is not None else output
1063
+
1064
+ return CausalLMOutputWithCrossAttentions(
1065
+ loss=loss,
1066
+ logits=lm_logits,
1067
+ past_key_values=transformer_outputs.past_key_values,
1068
+ hidden_states=transformer_outputs.hidden_states,
1069
+ attentions=transformer_outputs.attentions,
1070
+ cross_attentions=transformer_outputs.cross_attentions,
1071
+ )
1072
+
1073
+ @staticmethod
1074
+ def _reorder_cache(
1075
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1076
+ ) -> Tuple[Tuple[torch.Tensor]]:
1077
+ """
1078
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1079
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1080
+ beam_idx at every generation step.
1081
+ """
1082
+ return tuple(
1083
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1084
+ for layer_past in past_key_values
1085
+ )
pytorch_model-00002-of-00002.bin → pytorch_model-00001-of-00004.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a6b4baca82f70db69a3c797da06c1aa1e563b2793ae29296961f954fbccf364a
3
- size 7932560939
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:090fe12e4d8dbfa4716a4d6c9f7aa5d03c5dd2a47ea960bbc598c6ab3fbf7695
3
+ size 8809402977
pytorch_model-00001-of-00002.bin → pytorch_model-00002-of-00004.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8d00444e13f8473a27143e8b940927c7f3be2b50345b05b5ea3017fa5375ec53
3
- size 22838182633
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:350657500c0b18c5b3c6e2defcabd74aa5b2024915951ffe8d54a2bac927bda9
3
+ size 8927403605
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:380fda62052342c37630ff3d4eeb32ab2410f597a1a6b1dabc208f822d771af7
3
+ size 8927403605
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5edb83ef4ea68228b2ad8e7ded8e407c761c77cc2f7d8e2d8d2d90f8a2145999
3
+ size 4106529922
pytorch_model.bin.index.json CHANGED
@@ -3,570 +3,570 @@
3
  "total_size": 30770565200
4
  },
5
  "weight_map": {
6
- "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
- "transformer.h.0.attn.bias": "pytorch_model-00001-of-00002.bin",
8
- "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
9
- "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
10
- "transformer.h.0.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
11
- "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
12
- "transformer.h.0.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
13
- "transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00002.bin",
14
- "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
15
- "transformer.h.0.ln_2.bias": "pytorch_model-00001-of-00002.bin",
16
- "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
17
- "transformer.h.0.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
18
- "transformer.h.0.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
19
- "transformer.h.0.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
20
- "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
21
- "transformer.h.1.attn.bias": "pytorch_model-00001-of-00002.bin",
22
- "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
23
- "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
24
- "transformer.h.1.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
25
- "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
26
- "transformer.h.1.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
27
- "transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00002.bin",
28
- "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
29
- "transformer.h.1.ln_2.bias": "pytorch_model-00001-of-00002.bin",
30
- "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
31
- "transformer.h.1.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
32
- "transformer.h.1.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
33
- "transformer.h.1.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
34
- "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
35
- "transformer.h.10.attn.bias": "pytorch_model-00001-of-00002.bin",
36
- "transformer.h.10.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
37
- "transformer.h.10.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
38
- "transformer.h.10.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
39
- "transformer.h.10.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
40
- "transformer.h.10.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
41
- "transformer.h.10.ln_1.bias": "pytorch_model-00001-of-00002.bin",
42
- "transformer.h.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
43
- "transformer.h.10.ln_2.bias": "pytorch_model-00001-of-00002.bin",
44
- "transformer.h.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
45
- "transformer.h.10.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
46
- "transformer.h.10.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
47
- "transformer.h.10.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
48
- "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
49
- "transformer.h.11.attn.bias": "pytorch_model-00001-of-00002.bin",
50
- "transformer.h.11.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
51
- "transformer.h.11.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
52
- "transformer.h.11.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
53
- "transformer.h.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
54
- "transformer.h.11.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
55
- "transformer.h.11.ln_1.bias": "pytorch_model-00001-of-00002.bin",
56
- "transformer.h.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
57
- "transformer.h.11.ln_2.bias": "pytorch_model-00001-of-00002.bin",
58
- "transformer.h.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
59
- "transformer.h.11.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
60
- "transformer.h.11.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
61
- "transformer.h.11.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
62
- "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
63
- "transformer.h.12.attn.bias": "pytorch_model-00001-of-00002.bin",
64
- "transformer.h.12.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
65
- "transformer.h.12.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
66
- "transformer.h.12.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
67
- "transformer.h.12.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
68
- "transformer.h.12.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
69
- "transformer.h.12.ln_1.bias": "pytorch_model-00001-of-00002.bin",
70
- "transformer.h.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
71
- "transformer.h.12.ln_2.bias": "pytorch_model-00001-of-00002.bin",
72
- "transformer.h.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
73
- "transformer.h.12.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
74
- "transformer.h.12.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
75
- "transformer.h.12.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
76
- "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
77
- "transformer.h.13.attn.bias": "pytorch_model-00001-of-00002.bin",
78
- "transformer.h.13.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
79
- "transformer.h.13.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
80
- "transformer.h.13.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
81
- "transformer.h.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
82
- "transformer.h.13.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
83
- "transformer.h.13.ln_1.bias": "pytorch_model-00001-of-00002.bin",
84
- "transformer.h.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
85
- "transformer.h.13.ln_2.bias": "pytorch_model-00001-of-00002.bin",
86
- "transformer.h.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
87
- "transformer.h.13.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
88
- "transformer.h.13.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
89
- "transformer.h.13.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
90
- "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
91
- "transformer.h.14.attn.bias": "pytorch_model-00001-of-00002.bin",
92
- "transformer.h.14.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
93
- "transformer.h.14.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
94
- "transformer.h.14.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
95
- "transformer.h.14.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
96
- "transformer.h.14.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
97
- "transformer.h.14.ln_1.bias": "pytorch_model-00001-of-00002.bin",
98
- "transformer.h.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
99
- "transformer.h.14.ln_2.bias": "pytorch_model-00001-of-00002.bin",
100
- "transformer.h.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
101
- "transformer.h.14.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
102
- "transformer.h.14.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
103
- "transformer.h.14.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
104
- "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
105
- "transformer.h.15.attn.bias": "pytorch_model-00001-of-00002.bin",
106
- "transformer.h.15.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
107
- "transformer.h.15.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
108
- "transformer.h.15.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
109
- "transformer.h.15.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
110
- "transformer.h.15.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
111
- "transformer.h.15.ln_1.bias": "pytorch_model-00001-of-00002.bin",
112
- "transformer.h.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
113
- "transformer.h.15.ln_2.bias": "pytorch_model-00001-of-00002.bin",
114
- "transformer.h.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
115
- "transformer.h.15.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
116
- "transformer.h.15.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
117
- "transformer.h.15.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
118
- "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
119
- "transformer.h.16.attn.bias": "pytorch_model-00001-of-00002.bin",
120
- "transformer.h.16.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
121
- "transformer.h.16.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
122
- "transformer.h.16.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
123
- "transformer.h.16.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
124
- "transformer.h.16.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
125
- "transformer.h.16.ln_1.bias": "pytorch_model-00001-of-00002.bin",
126
- "transformer.h.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
127
- "transformer.h.16.ln_2.bias": "pytorch_model-00001-of-00002.bin",
128
- "transformer.h.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
129
- "transformer.h.16.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
130
- "transformer.h.16.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
131
- "transformer.h.16.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
132
- "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
133
- "transformer.h.17.attn.bias": "pytorch_model-00001-of-00002.bin",
134
- "transformer.h.17.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
135
- "transformer.h.17.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
136
- "transformer.h.17.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
137
- "transformer.h.17.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
138
- "transformer.h.17.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
139
- "transformer.h.17.ln_1.bias": "pytorch_model-00001-of-00002.bin",
140
- "transformer.h.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
141
- "transformer.h.17.ln_2.bias": "pytorch_model-00001-of-00002.bin",
142
- "transformer.h.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
143
- "transformer.h.17.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
144
- "transformer.h.17.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
145
- "transformer.h.17.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
146
- "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
147
- "transformer.h.18.attn.bias": "pytorch_model-00001-of-00002.bin",
148
- "transformer.h.18.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
149
- "transformer.h.18.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
150
- "transformer.h.18.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
151
- "transformer.h.18.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
152
- "transformer.h.18.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
153
- "transformer.h.18.ln_1.bias": "pytorch_model-00001-of-00002.bin",
154
- "transformer.h.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
155
- "transformer.h.18.ln_2.bias": "pytorch_model-00001-of-00002.bin",
156
- "transformer.h.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
157
- "transformer.h.18.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
158
- "transformer.h.18.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
159
- "transformer.h.18.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
160
- "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
161
- "transformer.h.19.attn.bias": "pytorch_model-00001-of-00002.bin",
162
- "transformer.h.19.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
163
- "transformer.h.19.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
164
- "transformer.h.19.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
165
- "transformer.h.19.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
166
- "transformer.h.19.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
167
- "transformer.h.19.ln_1.bias": "pytorch_model-00001-of-00002.bin",
168
- "transformer.h.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
169
- "transformer.h.19.ln_2.bias": "pytorch_model-00001-of-00002.bin",
170
- "transformer.h.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
171
- "transformer.h.19.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
172
- "transformer.h.19.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
173
- "transformer.h.19.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
174
- "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
175
- "transformer.h.2.attn.bias": "pytorch_model-00001-of-00002.bin",
176
- "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
177
- "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
178
- "transformer.h.2.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
179
- "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
180
- "transformer.h.2.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
181
- "transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00002.bin",
182
- "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
183
- "transformer.h.2.ln_2.bias": "pytorch_model-00001-of-00002.bin",
184
- "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
185
- "transformer.h.2.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
186
- "transformer.h.2.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
187
- "transformer.h.2.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
188
- "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
189
- "transformer.h.20.attn.bias": "pytorch_model-00001-of-00002.bin",
190
- "transformer.h.20.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
191
- "transformer.h.20.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
192
- "transformer.h.20.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
193
- "transformer.h.20.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
194
- "transformer.h.20.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
195
- "transformer.h.20.ln_1.bias": "pytorch_model-00001-of-00002.bin",
196
- "transformer.h.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
197
- "transformer.h.20.ln_2.bias": "pytorch_model-00001-of-00002.bin",
198
- "transformer.h.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
199
- "transformer.h.20.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
200
- "transformer.h.20.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
201
- "transformer.h.20.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
202
- "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
203
- "transformer.h.21.attn.bias": "pytorch_model-00001-of-00002.bin",
204
- "transformer.h.21.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
205
- "transformer.h.21.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
206
- "transformer.h.21.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
207
- "transformer.h.21.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
208
- "transformer.h.21.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
209
- "transformer.h.21.ln_1.bias": "pytorch_model-00001-of-00002.bin",
210
- "transformer.h.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
211
- "transformer.h.21.ln_2.bias": "pytorch_model-00001-of-00002.bin",
212
- "transformer.h.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
213
- "transformer.h.21.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
214
- "transformer.h.21.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
215
- "transformer.h.21.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
216
- "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
217
- "transformer.h.22.attn.bias": "pytorch_model-00001-of-00002.bin",
218
- "transformer.h.22.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
219
- "transformer.h.22.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
220
- "transformer.h.22.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
221
- "transformer.h.22.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
222
- "transformer.h.22.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
223
- "transformer.h.22.ln_1.bias": "pytorch_model-00001-of-00002.bin",
224
- "transformer.h.22.ln_1.weight": "pytorch_model-00001-of-00002.bin",
225
- "transformer.h.22.ln_2.bias": "pytorch_model-00001-of-00002.bin",
226
- "transformer.h.22.ln_2.weight": "pytorch_model-00001-of-00002.bin",
227
- "transformer.h.22.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
228
- "transformer.h.22.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
229
- "transformer.h.22.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
230
- "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
231
- "transformer.h.23.attn.bias": "pytorch_model-00001-of-00002.bin",
232
- "transformer.h.23.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
233
- "transformer.h.23.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
234
- "transformer.h.23.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
235
- "transformer.h.23.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
236
- "transformer.h.23.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
237
- "transformer.h.23.ln_1.bias": "pytorch_model-00001-of-00002.bin",
238
- "transformer.h.23.ln_1.weight": "pytorch_model-00001-of-00002.bin",
239
- "transformer.h.23.ln_2.bias": "pytorch_model-00001-of-00002.bin",
240
- "transformer.h.23.ln_2.weight": "pytorch_model-00001-of-00002.bin",
241
- "transformer.h.23.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
242
- "transformer.h.23.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
243
- "transformer.h.23.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
244
- "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
245
- "transformer.h.24.attn.bias": "pytorch_model-00001-of-00002.bin",
246
- "transformer.h.24.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
247
- "transformer.h.24.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
248
- "transformer.h.24.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
249
- "transformer.h.24.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
250
- "transformer.h.24.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
251
- "transformer.h.24.ln_1.bias": "pytorch_model-00001-of-00002.bin",
252
- "transformer.h.24.ln_1.weight": "pytorch_model-00001-of-00002.bin",
253
- "transformer.h.24.ln_2.bias": "pytorch_model-00001-of-00002.bin",
254
- "transformer.h.24.ln_2.weight": "pytorch_model-00001-of-00002.bin",
255
- "transformer.h.24.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
256
- "transformer.h.24.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
257
- "transformer.h.24.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
258
- "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
259
- "transformer.h.25.attn.bias": "pytorch_model-00001-of-00002.bin",
260
- "transformer.h.25.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
261
- "transformer.h.25.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
262
- "transformer.h.25.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
263
- "transformer.h.25.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
264
- "transformer.h.25.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
265
- "transformer.h.25.ln_1.bias": "pytorch_model-00001-of-00002.bin",
266
- "transformer.h.25.ln_1.weight": "pytorch_model-00001-of-00002.bin",
267
- "transformer.h.25.ln_2.bias": "pytorch_model-00001-of-00002.bin",
268
- "transformer.h.25.ln_2.weight": "pytorch_model-00001-of-00002.bin",
269
- "transformer.h.25.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
270
- "transformer.h.25.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
271
- "transformer.h.25.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
272
- "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
273
- "transformer.h.26.attn.bias": "pytorch_model-00001-of-00002.bin",
274
- "transformer.h.26.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
275
- "transformer.h.26.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
276
- "transformer.h.26.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
277
- "transformer.h.26.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
278
- "transformer.h.26.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
279
- "transformer.h.26.ln_1.bias": "pytorch_model-00001-of-00002.bin",
280
- "transformer.h.26.ln_1.weight": "pytorch_model-00001-of-00002.bin",
281
- "transformer.h.26.ln_2.bias": "pytorch_model-00001-of-00002.bin",
282
- "transformer.h.26.ln_2.weight": "pytorch_model-00001-of-00002.bin",
283
- "transformer.h.26.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
284
- "transformer.h.26.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
285
- "transformer.h.26.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
286
- "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
287
- "transformer.h.27.attn.bias": "pytorch_model-00001-of-00002.bin",
288
- "transformer.h.27.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
289
- "transformer.h.27.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
290
- "transformer.h.27.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
291
- "transformer.h.27.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
292
- "transformer.h.27.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
293
- "transformer.h.27.ln_1.bias": "pytorch_model-00001-of-00002.bin",
294
- "transformer.h.27.ln_1.weight": "pytorch_model-00001-of-00002.bin",
295
- "transformer.h.27.ln_2.bias": "pytorch_model-00001-of-00002.bin",
296
- "transformer.h.27.ln_2.weight": "pytorch_model-00001-of-00002.bin",
297
- "transformer.h.27.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
298
- "transformer.h.27.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
299
- "transformer.h.27.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
300
- "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
301
- "transformer.h.28.attn.bias": "pytorch_model-00001-of-00002.bin",
302
- "transformer.h.28.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
303
- "transformer.h.28.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
304
- "transformer.h.28.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
305
- "transformer.h.28.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
306
- "transformer.h.28.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
307
- "transformer.h.28.ln_1.bias": "pytorch_model-00001-of-00002.bin",
308
- "transformer.h.28.ln_1.weight": "pytorch_model-00001-of-00002.bin",
309
- "transformer.h.28.ln_2.bias": "pytorch_model-00001-of-00002.bin",
310
- "transformer.h.28.ln_2.weight": "pytorch_model-00001-of-00002.bin",
311
- "transformer.h.28.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
312
- "transformer.h.28.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
313
- "transformer.h.28.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
314
- "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
315
- "transformer.h.29.attn.bias": "pytorch_model-00001-of-00002.bin",
316
- "transformer.h.29.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
317
- "transformer.h.29.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
318
- "transformer.h.29.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
319
- "transformer.h.29.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
320
- "transformer.h.29.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
321
- "transformer.h.29.ln_1.bias": "pytorch_model-00001-of-00002.bin",
322
- "transformer.h.29.ln_1.weight": "pytorch_model-00001-of-00002.bin",
323
- "transformer.h.29.ln_2.bias": "pytorch_model-00001-of-00002.bin",
324
- "transformer.h.29.ln_2.weight": "pytorch_model-00001-of-00002.bin",
325
- "transformer.h.29.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
326
- "transformer.h.29.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
327
- "transformer.h.29.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
328
- "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
329
- "transformer.h.3.attn.bias": "pytorch_model-00001-of-00002.bin",
330
- "transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
331
- "transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
332
- "transformer.h.3.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
333
- "transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
334
- "transformer.h.3.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
335
- "transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00002.bin",
336
- "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
337
- "transformer.h.3.ln_2.bias": "pytorch_model-00001-of-00002.bin",
338
- "transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
339
- "transformer.h.3.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
340
- "transformer.h.3.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
341
- "transformer.h.3.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
342
- "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
343
- "transformer.h.30.attn.bias": "pytorch_model-00001-of-00002.bin",
344
- "transformer.h.30.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
345
- "transformer.h.30.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
346
- "transformer.h.30.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
347
- "transformer.h.30.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
348
- "transformer.h.30.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
349
- "transformer.h.30.ln_1.bias": "pytorch_model-00001-of-00002.bin",
350
- "transformer.h.30.ln_1.weight": "pytorch_model-00001-of-00002.bin",
351
- "transformer.h.30.ln_2.bias": "pytorch_model-00001-of-00002.bin",
352
- "transformer.h.30.ln_2.weight": "pytorch_model-00001-of-00002.bin",
353
- "transformer.h.30.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
354
- "transformer.h.30.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
355
- "transformer.h.30.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
356
- "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
357
- "transformer.h.31.attn.bias": "pytorch_model-00001-of-00002.bin",
358
- "transformer.h.31.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
359
- "transformer.h.31.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
360
- "transformer.h.31.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
361
- "transformer.h.31.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
362
- "transformer.h.31.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
363
- "transformer.h.31.ln_1.bias": "pytorch_model-00001-of-00002.bin",
364
- "transformer.h.31.ln_1.weight": "pytorch_model-00001-of-00002.bin",
365
- "transformer.h.31.ln_2.bias": "pytorch_model-00001-of-00002.bin",
366
- "transformer.h.31.ln_2.weight": "pytorch_model-00001-of-00002.bin",
367
- "transformer.h.31.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
368
- "transformer.h.31.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
369
- "transformer.h.31.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
370
- "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
371
- "transformer.h.32.attn.bias": "pytorch_model-00002-of-00002.bin",
372
- "transformer.h.32.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
373
- "transformer.h.32.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
374
- "transformer.h.32.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
375
- "transformer.h.32.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
376
- "transformer.h.32.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
377
- "transformer.h.32.ln_1.bias": "pytorch_model-00002-of-00002.bin",
378
- "transformer.h.32.ln_1.weight": "pytorch_model-00002-of-00002.bin",
379
- "transformer.h.32.ln_2.bias": "pytorch_model-00002-of-00002.bin",
380
- "transformer.h.32.ln_2.weight": "pytorch_model-00002-of-00002.bin",
381
- "transformer.h.32.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
382
- "transformer.h.32.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
383
- "transformer.h.32.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
384
- "transformer.h.32.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
385
- "transformer.h.33.attn.bias": "pytorch_model-00002-of-00002.bin",
386
- "transformer.h.33.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
387
- "transformer.h.33.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
388
- "transformer.h.33.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
389
- "transformer.h.33.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
390
- "transformer.h.33.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
391
- "transformer.h.33.ln_1.bias": "pytorch_model-00002-of-00002.bin",
392
- "transformer.h.33.ln_1.weight": "pytorch_model-00002-of-00002.bin",
393
- "transformer.h.33.ln_2.bias": "pytorch_model-00002-of-00002.bin",
394
- "transformer.h.33.ln_2.weight": "pytorch_model-00002-of-00002.bin",
395
- "transformer.h.33.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
396
- "transformer.h.33.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
397
- "transformer.h.33.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
398
- "transformer.h.33.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
399
- "transformer.h.34.attn.bias": "pytorch_model-00002-of-00002.bin",
400
- "transformer.h.34.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
401
- "transformer.h.34.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
402
- "transformer.h.34.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
403
- "transformer.h.34.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
404
- "transformer.h.34.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
405
- "transformer.h.34.ln_1.bias": "pytorch_model-00002-of-00002.bin",
406
- "transformer.h.34.ln_1.weight": "pytorch_model-00002-of-00002.bin",
407
- "transformer.h.34.ln_2.bias": "pytorch_model-00002-of-00002.bin",
408
- "transformer.h.34.ln_2.weight": "pytorch_model-00002-of-00002.bin",
409
- "transformer.h.34.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
410
- "transformer.h.34.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
411
- "transformer.h.34.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
412
- "transformer.h.34.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
413
- "transformer.h.35.attn.bias": "pytorch_model-00002-of-00002.bin",
414
- "transformer.h.35.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
415
- "transformer.h.35.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
416
- "transformer.h.35.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
417
- "transformer.h.35.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
418
- "transformer.h.35.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
419
- "transformer.h.35.ln_1.bias": "pytorch_model-00002-of-00002.bin",
420
- "transformer.h.35.ln_1.weight": "pytorch_model-00002-of-00002.bin",
421
- "transformer.h.35.ln_2.bias": "pytorch_model-00002-of-00002.bin",
422
- "transformer.h.35.ln_2.weight": "pytorch_model-00002-of-00002.bin",
423
- "transformer.h.35.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
424
- "transformer.h.35.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
425
- "transformer.h.35.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
426
- "transformer.h.35.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
427
- "transformer.h.36.attn.bias": "pytorch_model-00002-of-00002.bin",
428
- "transformer.h.36.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
429
- "transformer.h.36.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
430
- "transformer.h.36.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
431
- "transformer.h.36.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
432
- "transformer.h.36.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
433
- "transformer.h.36.ln_1.bias": "pytorch_model-00002-of-00002.bin",
434
- "transformer.h.36.ln_1.weight": "pytorch_model-00002-of-00002.bin",
435
- "transformer.h.36.ln_2.bias": "pytorch_model-00002-of-00002.bin",
436
- "transformer.h.36.ln_2.weight": "pytorch_model-00002-of-00002.bin",
437
- "transformer.h.36.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
438
- "transformer.h.36.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
439
- "transformer.h.36.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
440
- "transformer.h.36.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
441
- "transformer.h.37.attn.bias": "pytorch_model-00002-of-00002.bin",
442
- "transformer.h.37.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
443
- "transformer.h.37.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
444
- "transformer.h.37.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
445
- "transformer.h.37.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
446
- "transformer.h.37.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
447
- "transformer.h.37.ln_1.bias": "pytorch_model-00002-of-00002.bin",
448
- "transformer.h.37.ln_1.weight": "pytorch_model-00002-of-00002.bin",
449
- "transformer.h.37.ln_2.bias": "pytorch_model-00002-of-00002.bin",
450
- "transformer.h.37.ln_2.weight": "pytorch_model-00002-of-00002.bin",
451
- "transformer.h.37.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
452
- "transformer.h.37.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
453
- "transformer.h.37.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
454
- "transformer.h.37.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
455
- "transformer.h.38.attn.bias": "pytorch_model-00002-of-00002.bin",
456
- "transformer.h.38.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
457
- "transformer.h.38.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
458
- "transformer.h.38.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
459
- "transformer.h.38.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
460
- "transformer.h.38.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
461
- "transformer.h.38.ln_1.bias": "pytorch_model-00002-of-00002.bin",
462
- "transformer.h.38.ln_1.weight": "pytorch_model-00002-of-00002.bin",
463
- "transformer.h.38.ln_2.bias": "pytorch_model-00002-of-00002.bin",
464
- "transformer.h.38.ln_2.weight": "pytorch_model-00002-of-00002.bin",
465
- "transformer.h.38.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
466
- "transformer.h.38.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
467
- "transformer.h.38.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
468
- "transformer.h.38.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
469
- "transformer.h.39.attn.bias": "pytorch_model-00002-of-00002.bin",
470
- "transformer.h.39.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
471
- "transformer.h.39.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
472
- "transformer.h.39.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
473
- "transformer.h.39.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
474
- "transformer.h.39.attn.masked_bias": "pytorch_model-00002-of-00002.bin",
475
- "transformer.h.39.ln_1.bias": "pytorch_model-00002-of-00002.bin",
476
- "transformer.h.39.ln_1.weight": "pytorch_model-00002-of-00002.bin",
477
- "transformer.h.39.ln_2.bias": "pytorch_model-00002-of-00002.bin",
478
- "transformer.h.39.ln_2.weight": "pytorch_model-00002-of-00002.bin",
479
- "transformer.h.39.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
480
- "transformer.h.39.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
481
- "transformer.h.39.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
482
- "transformer.h.39.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
483
- "transformer.h.4.attn.bias": "pytorch_model-00001-of-00002.bin",
484
- "transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
485
- "transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
486
- "transformer.h.4.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
487
- "transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
488
- "transformer.h.4.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
489
- "transformer.h.4.ln_1.bias": "pytorch_model-00001-of-00002.bin",
490
- "transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
491
- "transformer.h.4.ln_2.bias": "pytorch_model-00001-of-00002.bin",
492
- "transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
493
- "transformer.h.4.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
494
- "transformer.h.4.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
495
- "transformer.h.4.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
496
- "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
497
- "transformer.h.5.attn.bias": "pytorch_model-00001-of-00002.bin",
498
- "transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
499
- "transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
500
- "transformer.h.5.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
501
- "transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
502
- "transformer.h.5.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
503
- "transformer.h.5.ln_1.bias": "pytorch_model-00001-of-00002.bin",
504
- "transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
505
- "transformer.h.5.ln_2.bias": "pytorch_model-00001-of-00002.bin",
506
- "transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
507
- "transformer.h.5.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
508
- "transformer.h.5.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
509
- "transformer.h.5.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
510
- "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
511
- "transformer.h.6.attn.bias": "pytorch_model-00001-of-00002.bin",
512
- "transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
513
- "transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
514
- "transformer.h.6.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
515
- "transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
516
- "transformer.h.6.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
517
- "transformer.h.6.ln_1.bias": "pytorch_model-00001-of-00002.bin",
518
- "transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
519
- "transformer.h.6.ln_2.bias": "pytorch_model-00001-of-00002.bin",
520
- "transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
521
- "transformer.h.6.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
522
- "transformer.h.6.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
523
- "transformer.h.6.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
524
- "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
525
- "transformer.h.7.attn.bias": "pytorch_model-00001-of-00002.bin",
526
- "transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
527
- "transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
528
- "transformer.h.7.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
529
- "transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
530
- "transformer.h.7.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
531
- "transformer.h.7.ln_1.bias": "pytorch_model-00001-of-00002.bin",
532
- "transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
533
- "transformer.h.7.ln_2.bias": "pytorch_model-00001-of-00002.bin",
534
- "transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
535
- "transformer.h.7.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
536
- "transformer.h.7.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
537
- "transformer.h.7.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
538
- "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
539
- "transformer.h.8.attn.bias": "pytorch_model-00001-of-00002.bin",
540
- "transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
541
- "transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
542
- "transformer.h.8.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
543
- "transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
544
- "transformer.h.8.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
545
- "transformer.h.8.ln_1.bias": "pytorch_model-00001-of-00002.bin",
546
- "transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
547
- "transformer.h.8.ln_2.bias": "pytorch_model-00001-of-00002.bin",
548
- "transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
549
- "transformer.h.8.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
550
- "transformer.h.8.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
551
- "transformer.h.8.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
552
- "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
553
- "transformer.h.9.attn.bias": "pytorch_model-00001-of-00002.bin",
554
- "transformer.h.9.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
555
- "transformer.h.9.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
556
- "transformer.h.9.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
557
- "transformer.h.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
558
- "transformer.h.9.attn.masked_bias": "pytorch_model-00001-of-00002.bin",
559
- "transformer.h.9.ln_1.bias": "pytorch_model-00001-of-00002.bin",
560
- "transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
561
- "transformer.h.9.ln_2.bias": "pytorch_model-00001-of-00002.bin",
562
- "transformer.h.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
563
- "transformer.h.9.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
564
- "transformer.h.9.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
565
- "transformer.h.9.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
566
- "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
567
- "transformer.ln_f.bias": "pytorch_model-00002-of-00002.bin",
568
- "transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
569
- "transformer.wpe.weight": "pytorch_model-00001-of-00002.bin",
570
- "transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
571
  }
572
  }
 
3
  "total_size": 30770565200
4
  },
5
  "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "transformer.h.0.attn.bias": "pytorch_model-00001-of-00004.bin",
8
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
9
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
10
+ "transformer.h.0.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
11
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "transformer.h.0.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
13
+ "transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00004.bin",
14
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00004.bin",
15
+ "transformer.h.0.ln_2.bias": "pytorch_model-00001-of-00004.bin",
16
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00004.bin",
17
+ "transformer.h.0.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
18
+ "transformer.h.0.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
19
+ "transformer.h.0.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
20
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
21
+ "transformer.h.1.attn.bias": "pytorch_model-00001-of-00004.bin",
22
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
23
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
24
+ "transformer.h.1.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
25
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
26
+ "transformer.h.1.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
27
+ "transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00004.bin",
28
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00004.bin",
29
+ "transformer.h.1.ln_2.bias": "pytorch_model-00001-of-00004.bin",
30
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00004.bin",
31
+ "transformer.h.1.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
32
+ "transformer.h.1.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
33
+ "transformer.h.1.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
34
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
35
+ "transformer.h.10.attn.bias": "pytorch_model-00002-of-00004.bin",
36
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
37
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
38
+ "transformer.h.10.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
39
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
40
+ "transformer.h.10.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
41
+ "transformer.h.10.ln_1.bias": "pytorch_model-00002-of-00004.bin",
42
+ "transformer.h.10.ln_1.weight": "pytorch_model-00002-of-00004.bin",
43
+ "transformer.h.10.ln_2.bias": "pytorch_model-00002-of-00004.bin",
44
+ "transformer.h.10.ln_2.weight": "pytorch_model-00002-of-00004.bin",
45
+ "transformer.h.10.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
46
+ "transformer.h.10.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
47
+ "transformer.h.10.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
48
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
49
+ "transformer.h.11.attn.bias": "pytorch_model-00002-of-00004.bin",
50
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
51
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
52
+ "transformer.h.11.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
53
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
54
+ "transformer.h.11.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
55
+ "transformer.h.11.ln_1.bias": "pytorch_model-00002-of-00004.bin",
56
+ "transformer.h.11.ln_1.weight": "pytorch_model-00002-of-00004.bin",
57
+ "transformer.h.11.ln_2.bias": "pytorch_model-00002-of-00004.bin",
58
+ "transformer.h.11.ln_2.weight": "pytorch_model-00002-of-00004.bin",
59
+ "transformer.h.11.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
60
+ "transformer.h.11.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
61
+ "transformer.h.11.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
62
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
63
+ "transformer.h.12.attn.bias": "pytorch_model-00002-of-00004.bin",
64
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
65
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
66
+ "transformer.h.12.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
67
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "transformer.h.12.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
69
+ "transformer.h.12.ln_1.bias": "pytorch_model-00002-of-00004.bin",
70
+ "transformer.h.12.ln_1.weight": "pytorch_model-00002-of-00004.bin",
71
+ "transformer.h.12.ln_2.bias": "pytorch_model-00002-of-00004.bin",
72
+ "transformer.h.12.ln_2.weight": "pytorch_model-00002-of-00004.bin",
73
+ "transformer.h.12.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
74
+ "transformer.h.12.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
75
+ "transformer.h.12.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
76
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
77
+ "transformer.h.13.attn.bias": "pytorch_model-00002-of-00004.bin",
78
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
79
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
80
+ "transformer.h.13.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
81
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "transformer.h.13.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
83
+ "transformer.h.13.ln_1.bias": "pytorch_model-00002-of-00004.bin",
84
+ "transformer.h.13.ln_1.weight": "pytorch_model-00002-of-00004.bin",
85
+ "transformer.h.13.ln_2.bias": "pytorch_model-00002-of-00004.bin",
86
+ "transformer.h.13.ln_2.weight": "pytorch_model-00002-of-00004.bin",
87
+ "transformer.h.13.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
88
+ "transformer.h.13.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
89
+ "transformer.h.13.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
90
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
91
+ "transformer.h.14.attn.bias": "pytorch_model-00002-of-00004.bin",
92
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
93
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
94
+ "transformer.h.14.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
95
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "transformer.h.14.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
97
+ "transformer.h.14.ln_1.bias": "pytorch_model-00002-of-00004.bin",
98
+ "transformer.h.14.ln_1.weight": "pytorch_model-00002-of-00004.bin",
99
+ "transformer.h.14.ln_2.bias": "pytorch_model-00002-of-00004.bin",
100
+ "transformer.h.14.ln_2.weight": "pytorch_model-00002-of-00004.bin",
101
+ "transformer.h.14.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
102
+ "transformer.h.14.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
103
+ "transformer.h.14.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
104
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
105
+ "transformer.h.15.attn.bias": "pytorch_model-00002-of-00004.bin",
106
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
107
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
108
+ "transformer.h.15.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
109
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
110
+ "transformer.h.15.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
111
+ "transformer.h.15.ln_1.bias": "pytorch_model-00002-of-00004.bin",
112
+ "transformer.h.15.ln_1.weight": "pytorch_model-00002-of-00004.bin",
113
+ "transformer.h.15.ln_2.bias": "pytorch_model-00002-of-00004.bin",
114
+ "transformer.h.15.ln_2.weight": "pytorch_model-00002-of-00004.bin",
115
+ "transformer.h.15.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
116
+ "transformer.h.15.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
117
+ "transformer.h.15.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
118
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
119
+ "transformer.h.16.attn.bias": "pytorch_model-00002-of-00004.bin",
120
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
121
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
122
+ "transformer.h.16.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
123
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
124
+ "transformer.h.16.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
125
+ "transformer.h.16.ln_1.bias": "pytorch_model-00002-of-00004.bin",
126
+ "transformer.h.16.ln_1.weight": "pytorch_model-00002-of-00004.bin",
127
+ "transformer.h.16.ln_2.bias": "pytorch_model-00002-of-00004.bin",
128
+ "transformer.h.16.ln_2.weight": "pytorch_model-00002-of-00004.bin",
129
+ "transformer.h.16.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
130
+ "transformer.h.16.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
131
+ "transformer.h.16.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
132
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
133
+ "transformer.h.17.attn.bias": "pytorch_model-00002-of-00004.bin",
134
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
135
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
136
+ "transformer.h.17.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
137
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
138
+ "transformer.h.17.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
139
+ "transformer.h.17.ln_1.bias": "pytorch_model-00002-of-00004.bin",
140
+ "transformer.h.17.ln_1.weight": "pytorch_model-00002-of-00004.bin",
141
+ "transformer.h.17.ln_2.bias": "pytorch_model-00002-of-00004.bin",
142
+ "transformer.h.17.ln_2.weight": "pytorch_model-00002-of-00004.bin",
143
+ "transformer.h.17.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
144
+ "transformer.h.17.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
145
+ "transformer.h.17.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
146
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
147
+ "transformer.h.18.attn.bias": "pytorch_model-00002-of-00004.bin",
148
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
149
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
150
+ "transformer.h.18.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
151
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
152
+ "transformer.h.18.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
153
+ "transformer.h.18.ln_1.bias": "pytorch_model-00002-of-00004.bin",
154
+ "transformer.h.18.ln_1.weight": "pytorch_model-00002-of-00004.bin",
155
+ "transformer.h.18.ln_2.bias": "pytorch_model-00002-of-00004.bin",
156
+ "transformer.h.18.ln_2.weight": "pytorch_model-00002-of-00004.bin",
157
+ "transformer.h.18.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
158
+ "transformer.h.18.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
159
+ "transformer.h.18.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
160
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
161
+ "transformer.h.19.attn.bias": "pytorch_model-00002-of-00004.bin",
162
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
163
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
164
+ "transformer.h.19.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
165
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
166
+ "transformer.h.19.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
167
+ "transformer.h.19.ln_1.bias": "pytorch_model-00002-of-00004.bin",
168
+ "transformer.h.19.ln_1.weight": "pytorch_model-00002-of-00004.bin",
169
+ "transformer.h.19.ln_2.bias": "pytorch_model-00002-of-00004.bin",
170
+ "transformer.h.19.ln_2.weight": "pytorch_model-00002-of-00004.bin",
171
+ "transformer.h.19.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
172
+ "transformer.h.19.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
173
+ "transformer.h.19.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
174
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
175
+ "transformer.h.2.attn.bias": "pytorch_model-00001-of-00004.bin",
176
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
177
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
178
+ "transformer.h.2.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
179
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
180
+ "transformer.h.2.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
181
+ "transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00004.bin",
182
+ "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00004.bin",
183
+ "transformer.h.2.ln_2.bias": "pytorch_model-00001-of-00004.bin",
184
+ "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00004.bin",
185
+ "transformer.h.2.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
186
+ "transformer.h.2.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
187
+ "transformer.h.2.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
188
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
189
+ "transformer.h.20.attn.bias": "pytorch_model-00002-of-00004.bin",
190
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
191
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
192
+ "transformer.h.20.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
193
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
194
+ "transformer.h.20.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
195
+ "transformer.h.20.ln_1.bias": "pytorch_model-00002-of-00004.bin",
196
+ "transformer.h.20.ln_1.weight": "pytorch_model-00002-of-00004.bin",
197
+ "transformer.h.20.ln_2.bias": "pytorch_model-00002-of-00004.bin",
198
+ "transformer.h.20.ln_2.weight": "pytorch_model-00002-of-00004.bin",
199
+ "transformer.h.20.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
200
+ "transformer.h.20.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
201
+ "transformer.h.20.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
202
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
203
+ "transformer.h.21.attn.bias": "pytorch_model-00002-of-00004.bin",
204
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
205
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
206
+ "transformer.h.21.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
207
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
208
+ "transformer.h.21.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
209
+ "transformer.h.21.ln_1.bias": "pytorch_model-00002-of-00004.bin",
210
+ "transformer.h.21.ln_1.weight": "pytorch_model-00002-of-00004.bin",
211
+ "transformer.h.21.ln_2.bias": "pytorch_model-00002-of-00004.bin",
212
+ "transformer.h.21.ln_2.weight": "pytorch_model-00002-of-00004.bin",
213
+ "transformer.h.21.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
214
+ "transformer.h.21.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
215
+ "transformer.h.21.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
216
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
217
+ "transformer.h.22.attn.bias": "pytorch_model-00002-of-00004.bin",
218
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
219
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
220
+ "transformer.h.22.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
221
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
222
+ "transformer.h.22.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
223
+ "transformer.h.22.ln_1.bias": "pytorch_model-00002-of-00004.bin",
224
+ "transformer.h.22.ln_1.weight": "pytorch_model-00002-of-00004.bin",
225
+ "transformer.h.22.ln_2.bias": "pytorch_model-00002-of-00004.bin",
226
+ "transformer.h.22.ln_2.weight": "pytorch_model-00002-of-00004.bin",
227
+ "transformer.h.22.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
228
+ "transformer.h.22.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
229
+ "transformer.h.22.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
230
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
231
+ "transformer.h.23.attn.bias": "pytorch_model-00002-of-00004.bin",
232
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00002-of-00004.bin",
233
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00002-of-00004.bin",
234
+ "transformer.h.23.attn.c_proj.bias": "pytorch_model-00002-of-00004.bin",
235
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00002-of-00004.bin",
236
+ "transformer.h.23.attn.masked_bias": "pytorch_model-00002-of-00004.bin",
237
+ "transformer.h.23.ln_1.bias": "pytorch_model-00002-of-00004.bin",
238
+ "transformer.h.23.ln_1.weight": "pytorch_model-00002-of-00004.bin",
239
+ "transformer.h.23.ln_2.bias": "pytorch_model-00002-of-00004.bin",
240
+ "transformer.h.23.ln_2.weight": "pytorch_model-00002-of-00004.bin",
241
+ "transformer.h.23.mlp.c_fc.bias": "pytorch_model-00002-of-00004.bin",
242
+ "transformer.h.23.mlp.c_fc.weight": "pytorch_model-00002-of-00004.bin",
243
+ "transformer.h.23.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
244
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
245
+ "transformer.h.24.attn.bias": "pytorch_model-00003-of-00004.bin",
246
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
247
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
248
+ "transformer.h.24.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
249
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "transformer.h.24.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
251
+ "transformer.h.24.ln_1.bias": "pytorch_model-00003-of-00004.bin",
252
+ "transformer.h.24.ln_1.weight": "pytorch_model-00003-of-00004.bin",
253
+ "transformer.h.24.ln_2.bias": "pytorch_model-00003-of-00004.bin",
254
+ "transformer.h.24.ln_2.weight": "pytorch_model-00003-of-00004.bin",
255
+ "transformer.h.24.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
256
+ "transformer.h.24.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
257
+ "transformer.h.24.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
258
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
259
+ "transformer.h.25.attn.bias": "pytorch_model-00003-of-00004.bin",
260
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
261
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
262
+ "transformer.h.25.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
263
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
264
+ "transformer.h.25.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
265
+ "transformer.h.25.ln_1.bias": "pytorch_model-00003-of-00004.bin",
266
+ "transformer.h.25.ln_1.weight": "pytorch_model-00003-of-00004.bin",
267
+ "transformer.h.25.ln_2.bias": "pytorch_model-00003-of-00004.bin",
268
+ "transformer.h.25.ln_2.weight": "pytorch_model-00003-of-00004.bin",
269
+ "transformer.h.25.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
270
+ "transformer.h.25.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
271
+ "transformer.h.25.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
272
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
273
+ "transformer.h.26.attn.bias": "pytorch_model-00003-of-00004.bin",
274
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
275
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
276
+ "transformer.h.26.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
277
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
278
+ "transformer.h.26.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
279
+ "transformer.h.26.ln_1.bias": "pytorch_model-00003-of-00004.bin",
280
+ "transformer.h.26.ln_1.weight": "pytorch_model-00003-of-00004.bin",
281
+ "transformer.h.26.ln_2.bias": "pytorch_model-00003-of-00004.bin",
282
+ "transformer.h.26.ln_2.weight": "pytorch_model-00003-of-00004.bin",
283
+ "transformer.h.26.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
284
+ "transformer.h.26.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
285
+ "transformer.h.26.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
286
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
287
+ "transformer.h.27.attn.bias": "pytorch_model-00003-of-00004.bin",
288
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
289
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
290
+ "transformer.h.27.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
291
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
292
+ "transformer.h.27.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
293
+ "transformer.h.27.ln_1.bias": "pytorch_model-00003-of-00004.bin",
294
+ "transformer.h.27.ln_1.weight": "pytorch_model-00003-of-00004.bin",
295
+ "transformer.h.27.ln_2.bias": "pytorch_model-00003-of-00004.bin",
296
+ "transformer.h.27.ln_2.weight": "pytorch_model-00003-of-00004.bin",
297
+ "transformer.h.27.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
298
+ "transformer.h.27.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
299
+ "transformer.h.27.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
300
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
301
+ "transformer.h.28.attn.bias": "pytorch_model-00003-of-00004.bin",
302
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
303
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
304
+ "transformer.h.28.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
305
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
306
+ "transformer.h.28.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
307
+ "transformer.h.28.ln_1.bias": "pytorch_model-00003-of-00004.bin",
308
+ "transformer.h.28.ln_1.weight": "pytorch_model-00003-of-00004.bin",
309
+ "transformer.h.28.ln_2.bias": "pytorch_model-00003-of-00004.bin",
310
+ "transformer.h.28.ln_2.weight": "pytorch_model-00003-of-00004.bin",
311
+ "transformer.h.28.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
312
+ "transformer.h.28.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
313
+ "transformer.h.28.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
314
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
315
+ "transformer.h.29.attn.bias": "pytorch_model-00003-of-00004.bin",
316
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
317
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
318
+ "transformer.h.29.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
319
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
320
+ "transformer.h.29.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
321
+ "transformer.h.29.ln_1.bias": "pytorch_model-00003-of-00004.bin",
322
+ "transformer.h.29.ln_1.weight": "pytorch_model-00003-of-00004.bin",
323
+ "transformer.h.29.ln_2.bias": "pytorch_model-00003-of-00004.bin",
324
+ "transformer.h.29.ln_2.weight": "pytorch_model-00003-of-00004.bin",
325
+ "transformer.h.29.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
326
+ "transformer.h.29.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
327
+ "transformer.h.29.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
328
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
329
+ "transformer.h.3.attn.bias": "pytorch_model-00001-of-00004.bin",
330
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
331
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
332
+ "transformer.h.3.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
333
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
334
+ "transformer.h.3.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
335
+ "transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00004.bin",
336
+ "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00004.bin",
337
+ "transformer.h.3.ln_2.bias": "pytorch_model-00001-of-00004.bin",
338
+ "transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00004.bin",
339
+ "transformer.h.3.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
340
+ "transformer.h.3.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
341
+ "transformer.h.3.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
342
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
343
+ "transformer.h.30.attn.bias": "pytorch_model-00003-of-00004.bin",
344
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
345
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
346
+ "transformer.h.30.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
347
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
348
+ "transformer.h.30.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
349
+ "transformer.h.30.ln_1.bias": "pytorch_model-00003-of-00004.bin",
350
+ "transformer.h.30.ln_1.weight": "pytorch_model-00003-of-00004.bin",
351
+ "transformer.h.30.ln_2.bias": "pytorch_model-00003-of-00004.bin",
352
+ "transformer.h.30.ln_2.weight": "pytorch_model-00003-of-00004.bin",
353
+ "transformer.h.30.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
354
+ "transformer.h.30.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
355
+ "transformer.h.30.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
356
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
357
+ "transformer.h.31.attn.bias": "pytorch_model-00003-of-00004.bin",
358
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
359
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
360
+ "transformer.h.31.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
361
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
362
+ "transformer.h.31.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
363
+ "transformer.h.31.ln_1.bias": "pytorch_model-00003-of-00004.bin",
364
+ "transformer.h.31.ln_1.weight": "pytorch_model-00003-of-00004.bin",
365
+ "transformer.h.31.ln_2.bias": "pytorch_model-00003-of-00004.bin",
366
+ "transformer.h.31.ln_2.weight": "pytorch_model-00003-of-00004.bin",
367
+ "transformer.h.31.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
368
+ "transformer.h.31.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
369
+ "transformer.h.31.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
370
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
371
+ "transformer.h.32.attn.bias": "pytorch_model-00003-of-00004.bin",
372
+ "transformer.h.32.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
373
+ "transformer.h.32.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
374
+ "transformer.h.32.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
375
+ "transformer.h.32.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
376
+ "transformer.h.32.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
377
+ "transformer.h.32.ln_1.bias": "pytorch_model-00003-of-00004.bin",
378
+ "transformer.h.32.ln_1.weight": "pytorch_model-00003-of-00004.bin",
379
+ "transformer.h.32.ln_2.bias": "pytorch_model-00003-of-00004.bin",
380
+ "transformer.h.32.ln_2.weight": "pytorch_model-00003-of-00004.bin",
381
+ "transformer.h.32.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
382
+ "transformer.h.32.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
383
+ "transformer.h.32.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
384
+ "transformer.h.32.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
385
+ "transformer.h.33.attn.bias": "pytorch_model-00003-of-00004.bin",
386
+ "transformer.h.33.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
387
+ "transformer.h.33.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
388
+ "transformer.h.33.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
389
+ "transformer.h.33.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
390
+ "transformer.h.33.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
391
+ "transformer.h.33.ln_1.bias": "pytorch_model-00003-of-00004.bin",
392
+ "transformer.h.33.ln_1.weight": "pytorch_model-00003-of-00004.bin",
393
+ "transformer.h.33.ln_2.bias": "pytorch_model-00003-of-00004.bin",
394
+ "transformer.h.33.ln_2.weight": "pytorch_model-00003-of-00004.bin",
395
+ "transformer.h.33.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
396
+ "transformer.h.33.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
397
+ "transformer.h.33.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
398
+ "transformer.h.33.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
399
+ "transformer.h.34.attn.bias": "pytorch_model-00003-of-00004.bin",
400
+ "transformer.h.34.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
401
+ "transformer.h.34.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
402
+ "transformer.h.34.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
403
+ "transformer.h.34.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
404
+ "transformer.h.34.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
405
+ "transformer.h.34.ln_1.bias": "pytorch_model-00003-of-00004.bin",
406
+ "transformer.h.34.ln_1.weight": "pytorch_model-00003-of-00004.bin",
407
+ "transformer.h.34.ln_2.bias": "pytorch_model-00003-of-00004.bin",
408
+ "transformer.h.34.ln_2.weight": "pytorch_model-00003-of-00004.bin",
409
+ "transformer.h.34.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
410
+ "transformer.h.34.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
411
+ "transformer.h.34.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
412
+ "transformer.h.34.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
413
+ "transformer.h.35.attn.bias": "pytorch_model-00003-of-00004.bin",
414
+ "transformer.h.35.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
415
+ "transformer.h.35.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
416
+ "transformer.h.35.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
417
+ "transformer.h.35.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
418
+ "transformer.h.35.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
419
+ "transformer.h.35.ln_1.bias": "pytorch_model-00003-of-00004.bin",
420
+ "transformer.h.35.ln_1.weight": "pytorch_model-00003-of-00004.bin",
421
+ "transformer.h.35.ln_2.bias": "pytorch_model-00003-of-00004.bin",
422
+ "transformer.h.35.ln_2.weight": "pytorch_model-00003-of-00004.bin",
423
+ "transformer.h.35.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
424
+ "transformer.h.35.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
425
+ "transformer.h.35.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
426
+ "transformer.h.35.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
427
+ "transformer.h.36.attn.bias": "pytorch_model-00003-of-00004.bin",
428
+ "transformer.h.36.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
429
+ "transformer.h.36.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
430
+ "transformer.h.36.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
431
+ "transformer.h.36.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
432
+ "transformer.h.36.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
433
+ "transformer.h.36.ln_1.bias": "pytorch_model-00003-of-00004.bin",
434
+ "transformer.h.36.ln_1.weight": "pytorch_model-00003-of-00004.bin",
435
+ "transformer.h.36.ln_2.bias": "pytorch_model-00003-of-00004.bin",
436
+ "transformer.h.36.ln_2.weight": "pytorch_model-00003-of-00004.bin",
437
+ "transformer.h.36.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
438
+ "transformer.h.36.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
439
+ "transformer.h.36.mlp.c_proj.bias": "pytorch_model-00003-of-00004.bin",
440
+ "transformer.h.36.mlp.c_proj.weight": "pytorch_model-00003-of-00004.bin",
441
+ "transformer.h.37.attn.bias": "pytorch_model-00003-of-00004.bin",
442
+ "transformer.h.37.attn.c_attn.bias": "pytorch_model-00003-of-00004.bin",
443
+ "transformer.h.37.attn.c_attn.weight": "pytorch_model-00003-of-00004.bin",
444
+ "transformer.h.37.attn.c_proj.bias": "pytorch_model-00003-of-00004.bin",
445
+ "transformer.h.37.attn.c_proj.weight": "pytorch_model-00003-of-00004.bin",
446
+ "transformer.h.37.attn.masked_bias": "pytorch_model-00003-of-00004.bin",
447
+ "transformer.h.37.ln_1.bias": "pytorch_model-00003-of-00004.bin",
448
+ "transformer.h.37.ln_1.weight": "pytorch_model-00003-of-00004.bin",
449
+ "transformer.h.37.ln_2.bias": "pytorch_model-00003-of-00004.bin",
450
+ "transformer.h.37.ln_2.weight": "pytorch_model-00003-of-00004.bin",
451
+ "transformer.h.37.mlp.c_fc.bias": "pytorch_model-00003-of-00004.bin",
452
+ "transformer.h.37.mlp.c_fc.weight": "pytorch_model-00003-of-00004.bin",
453
+ "transformer.h.37.mlp.c_proj.bias": "pytorch_model-00004-of-00004.bin",
454
+ "transformer.h.37.mlp.c_proj.weight": "pytorch_model-00004-of-00004.bin",
455
+ "transformer.h.38.attn.bias": "pytorch_model-00004-of-00004.bin",
456
+ "transformer.h.38.attn.c_attn.bias": "pytorch_model-00004-of-00004.bin",
457
+ "transformer.h.38.attn.c_attn.weight": "pytorch_model-00004-of-00004.bin",
458
+ "transformer.h.38.attn.c_proj.bias": "pytorch_model-00004-of-00004.bin",
459
+ "transformer.h.38.attn.c_proj.weight": "pytorch_model-00004-of-00004.bin",
460
+ "transformer.h.38.attn.masked_bias": "pytorch_model-00004-of-00004.bin",
461
+ "transformer.h.38.ln_1.bias": "pytorch_model-00004-of-00004.bin",
462
+ "transformer.h.38.ln_1.weight": "pytorch_model-00004-of-00004.bin",
463
+ "transformer.h.38.ln_2.bias": "pytorch_model-00004-of-00004.bin",
464
+ "transformer.h.38.ln_2.weight": "pytorch_model-00004-of-00004.bin",
465
+ "transformer.h.38.mlp.c_fc.bias": "pytorch_model-00004-of-00004.bin",
466
+ "transformer.h.38.mlp.c_fc.weight": "pytorch_model-00004-of-00004.bin",
467
+ "transformer.h.38.mlp.c_proj.bias": "pytorch_model-00004-of-00004.bin",
468
+ "transformer.h.38.mlp.c_proj.weight": "pytorch_model-00004-of-00004.bin",
469
+ "transformer.h.39.attn.bias": "pytorch_model-00004-of-00004.bin",
470
+ "transformer.h.39.attn.c_attn.bias": "pytorch_model-00004-of-00004.bin",
471
+ "transformer.h.39.attn.c_attn.weight": "pytorch_model-00004-of-00004.bin",
472
+ "transformer.h.39.attn.c_proj.bias": "pytorch_model-00004-of-00004.bin",
473
+ "transformer.h.39.attn.c_proj.weight": "pytorch_model-00004-of-00004.bin",
474
+ "transformer.h.39.attn.masked_bias": "pytorch_model-00004-of-00004.bin",
475
+ "transformer.h.39.ln_1.bias": "pytorch_model-00004-of-00004.bin",
476
+ "transformer.h.39.ln_1.weight": "pytorch_model-00004-of-00004.bin",
477
+ "transformer.h.39.ln_2.bias": "pytorch_model-00004-of-00004.bin",
478
+ "transformer.h.39.ln_2.weight": "pytorch_model-00004-of-00004.bin",
479
+ "transformer.h.39.mlp.c_fc.bias": "pytorch_model-00004-of-00004.bin",
480
+ "transformer.h.39.mlp.c_fc.weight": "pytorch_model-00004-of-00004.bin",
481
+ "transformer.h.39.mlp.c_proj.bias": "pytorch_model-00004-of-00004.bin",
482
+ "transformer.h.39.mlp.c_proj.weight": "pytorch_model-00004-of-00004.bin",
483
+ "transformer.h.4.attn.bias": "pytorch_model-00001-of-00004.bin",
484
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
485
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
486
+ "transformer.h.4.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
487
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
488
+ "transformer.h.4.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
489
+ "transformer.h.4.ln_1.bias": "pytorch_model-00001-of-00004.bin",
490
+ "transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00004.bin",
491
+ "transformer.h.4.ln_2.bias": "pytorch_model-00001-of-00004.bin",
492
+ "transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00004.bin",
493
+ "transformer.h.4.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
494
+ "transformer.h.4.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
495
+ "transformer.h.4.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
496
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
497
+ "transformer.h.5.attn.bias": "pytorch_model-00001-of-00004.bin",
498
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
499
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
500
+ "transformer.h.5.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
501
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
502
+ "transformer.h.5.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
503
+ "transformer.h.5.ln_1.bias": "pytorch_model-00001-of-00004.bin",
504
+ "transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00004.bin",
505
+ "transformer.h.5.ln_2.bias": "pytorch_model-00001-of-00004.bin",
506
+ "transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00004.bin",
507
+ "transformer.h.5.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
508
+ "transformer.h.5.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
509
+ "transformer.h.5.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
510
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
511
+ "transformer.h.6.attn.bias": "pytorch_model-00001-of-00004.bin",
512
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
513
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
514
+ "transformer.h.6.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
515
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
516
+ "transformer.h.6.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
517
+ "transformer.h.6.ln_1.bias": "pytorch_model-00001-of-00004.bin",
518
+ "transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00004.bin",
519
+ "transformer.h.6.ln_2.bias": "pytorch_model-00001-of-00004.bin",
520
+ "transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00004.bin",
521
+ "transformer.h.6.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
522
+ "transformer.h.6.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
523
+ "transformer.h.6.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
524
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
525
+ "transformer.h.7.attn.bias": "pytorch_model-00001-of-00004.bin",
526
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
527
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
528
+ "transformer.h.7.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
529
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
530
+ "transformer.h.7.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
531
+ "transformer.h.7.ln_1.bias": "pytorch_model-00001-of-00004.bin",
532
+ "transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00004.bin",
533
+ "transformer.h.7.ln_2.bias": "pytorch_model-00001-of-00004.bin",
534
+ "transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00004.bin",
535
+ "transformer.h.7.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
536
+ "transformer.h.7.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
537
+ "transformer.h.7.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
538
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
539
+ "transformer.h.8.attn.bias": "pytorch_model-00001-of-00004.bin",
540
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
541
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
542
+ "transformer.h.8.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
543
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
544
+ "transformer.h.8.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
545
+ "transformer.h.8.ln_1.bias": "pytorch_model-00001-of-00004.bin",
546
+ "transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00004.bin",
547
+ "transformer.h.8.ln_2.bias": "pytorch_model-00001-of-00004.bin",
548
+ "transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00004.bin",
549
+ "transformer.h.8.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
550
+ "transformer.h.8.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
551
+ "transformer.h.8.mlp.c_proj.bias": "pytorch_model-00001-of-00004.bin",
552
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00004.bin",
553
+ "transformer.h.9.attn.bias": "pytorch_model-00001-of-00004.bin",
554
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00001-of-00004.bin",
555
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00001-of-00004.bin",
556
+ "transformer.h.9.attn.c_proj.bias": "pytorch_model-00001-of-00004.bin",
557
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00001-of-00004.bin",
558
+ "transformer.h.9.attn.masked_bias": "pytorch_model-00001-of-00004.bin",
559
+ "transformer.h.9.ln_1.bias": "pytorch_model-00001-of-00004.bin",
560
+ "transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00004.bin",
561
+ "transformer.h.9.ln_2.bias": "pytorch_model-00001-of-00004.bin",
562
+ "transformer.h.9.ln_2.weight": "pytorch_model-00001-of-00004.bin",
563
+ "transformer.h.9.mlp.c_fc.bias": "pytorch_model-00001-of-00004.bin",
564
+ "transformer.h.9.mlp.c_fc.weight": "pytorch_model-00001-of-00004.bin",
565
+ "transformer.h.9.mlp.c_proj.bias": "pytorch_model-00002-of-00004.bin",
566
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00002-of-00004.bin",
567
+ "transformer.ln_f.bias": "pytorch_model-00004-of-00004.bin",
568
+ "transformer.ln_f.weight": "pytorch_model-00004-of-00004.bin",
569
+ "transformer.wpe.weight": "pytorch_model-00001-of-00004.bin",
570
+ "transformer.wte.weight": "pytorch_model-00001-of-00004.bin"
571
  }
572
  }