--- license: apache-2.0 language: - en - zh pipeline_tag: image-text-to-text tags: - multimodal library_name: transformers --- ## Introduction `Cylingo/Xinyuan-VL-2B` is a high-performance multimodal large model for the end-side from the Cylingo Group, which is fine-tuned with `Qwen/Qwen2-VL-2B-Instruct`, and uses more than 5M of multimodal data as well as a small amount of plain text data. It performs well on several authoritative Benchmarks. ## How to use In order to rely on the thriving ecology of the open source community, we chose to fine-tune [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) to form our `Cylingo/Xinyuan-VL- 2B`. Thus, using `Cylingo/Xinyuan-VL-2B` is consistent with using `Qwen/Qwen2-VL-2B-Instruct`: ```Python from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info # default: Load the model on the available device(s) model = Qwen2VLForConditionalGeneration.from_pretrained( "Cylingo/Xinyuan-VL-2B", torch_dtype="auto", device_map="auto" ) # default processer processor = AutoProcessor.from_pretrained("Cylingo/Xinyuan-VL-2B") messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ## Evaluation We evaluated **[XinYuan-VL-2B](https://huggingface.co/thomas-yanxin/XinYuan-VL-2B)** using the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) toolkit across the following benchmarks and found that **XinYuan-VL-2B** **outperformed** [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) released by Alibaba Cloud, as well as other models of comparable parameter scale that have significant influence in the open-source community.

You can see the results in [opencompass/open_vlm_leaderboard](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard): | Benchamrk | MiniCPM-2B | InternVL-2B | Qwen2-VL-2B | **XinYuan-VL-2B** | | :---: | :---: | :---: | :---: | :---: | | MMB-CN-V11-Test | 64.5 | 68.9 | 71.2 | **74.3** | | MMB-EN-V11-Test | 65.8 | 70.2 | 73.2 | **76.5** | | MMB-EN | 69.1 | 74.4 | 74.3 | **78.9** | | MMB-CN | 66.5 | 71.2 | 73.8 | **76.12** | | CCBench | 45.3 | 74.7 | 53.7 | 55.5 | | MMT-Bench | 53.5 | 50.8 | 54.5 | **55.2** | | RealWorld | 55.8 | 57.3 | 62.9 | **63.9** | | SEEDBench\_IMG | 67.1 | 70.9 | 72.86 | **73.4** | | AI2D | 56.3 | 74.1 | **74.7** | 74.2 | | MMMU | 38.2 | 36.3 | **41.1** | 40.9 | | HallusionBench | 36.2 | 36.2 | 42.4 | **55.00** | | POPE | 86.3 | 86.3 | 86.82 | **89.42** | | MME | 1808.6 | **1876.8** | 1872.0 | 1854.9 | | MMStar | 39.1 | 49.8 | 47.5 | **51.87** | | SEEDBench2\_Plus | 51.9 | 59.9 | 62.23 | **62.98** | | BLINK | 41.2 | 42.8 | **43.92** | 42.98 | | OCRBench | 605 | 781 | **794** | 782 | | TextVQA | 74.1 | 73.4 | **79.7** | 77.6 |