danielclone2 / chat_final.py
Cyleux's picture
Update chat_final.py
7b5fd9a
from src.model_run import RWKV_RNN
import numpy as np
import os, copy, types, gc, sys
import torch
from src.utils import TOKENIZER
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
np.set_printoptions(precision=4, suppress=True, linewidth=200)
WORD_NAME = ["20B_tokenizer.json", "20B_tokenizer.json"]
UNKNOWN_CHAR = None
tokenizer = TOKENIZER(WORD_NAME, UNKNOWN_CHAR=UNKNOWN_CHAR)
args = types.SimpleNamespace()
args.RUN_DEVICE = "cuda"
args.FLOAT_MODE = "fp32"
args.vocab_size = 50277
args.MODEL_NAME = 'zrwkv-37fifth'
# args.MODEL_NAME = 'zrwkv-23fifth'
args.n_layer = 12
args.n_embd = 768
args.ctx_len = 1024
user = "User"
bot = "Daniel"
interface = ":"
os.environ["RWKV_RUN_DEVICE"] = args.RUN_DEVICE
MODEL_NAME = args.MODEL_NAME
model = RWKV_RNN(args)
model_tokens = []
current_state = None
def run_rnn(tokens, newline_adj = 0):
global model_tokens, current_state
for i in range(len(tokens)):
model_tokens += [int(tokens[i])]
if i == len(tokens) - 1:
out, current_state = model.forward(model_tokens, current_state)
else:
current_state = model.forward(model_tokens, current_state, preprocess_only = True)
out[0] = -999999999
out[187] += newline_adj
return out
all_state = {}
def save_all_stat(name, last_out):
all_state[name] = {}
all_state[name]['out'] = last_out
all_state[name]['rnn'] = copy.deepcopy(current_state)
all_state[name]['token'] = copy.deepcopy(model_tokens)
def load_all_stat(name):
global model_tokens, current_state
current_state = copy.deepcopy(all_state[name]['rnn'])
model_tokens = copy.deepcopy(all_state[name]['token'])
return all_state[name]['out']
out = ""
gc.collect()
save_all_stat('chat_init', out)
save_all_stat('chat', out) # ensure that 'chat' key is added to all_state
def reply_msg_generator():
while True:
msg = yield
print(f'{bot}{interface} {msg}\n')
def on_message_generator():
global model_tokens, current_state
message = yield # This yield allows us to receive the initial message
while True:
msg = message.replace('\\n','\n').strip()
if len(msg) > 10000:
message = yield 'your message is too long (max 1000 tokens)'
out = load_all_stat('chat')
new = f"{user}{interface} {msg}\n{bot}{interface}"
out = run_rnn(tokenizer.tokenizer.encode(new), newline_adj=-999999999)
save_all_stat('chat_pre', out)
begin = len(model_tokens)
out_last = begin
yield f'{bot}{interface}' # Yield the bot's prompt immediately
for i in range(8000):
token = tokenizer.sample_logits(
out,
model_tokens,
args.ctx_len,
temperature=1.0,
top_p_usual=0.85,
top_p_newline=0.85,
)
out = run_rnn([token], newline_adj=1)
xxx = tokenizer.tokenizer.decode(model_tokens[out_last:])
if '\ufffd' not in xxx and 'user' not in str(xxx).lower() and '\n' not in xxx and str(xxx) != ':' and str(xxx) != '\n\n' and len(str(xxx)) > 0:
yield xxx # Yield each part of the response as soon as it's ready
out_last = begin + i + 1
else:
out_last = begin + i + 1
send_msg = tokenizer.tokenizer.decode(model_tokens[begin:])
if '\ufffd' in send_msg or send_msg.endswith(f'{user}{interface}') or send_msg.endswith(f'{bot}{interface}') or '\n' in send_msg:
send_msg = send_msg.strip()
send_msg = send_msg.replace(f'{user}{interface}', '')
send_msg = send_msg.replace(f'{bot}{interface}', '')
send_msg = send_msg.replace('\n', '')
break
save_all_stat('chat', out)
yield '\n' # Yield a newline at the end of the response
message = yield # Get the next message
print('Start chatting with Daniel! Pretend to pick up the phone.')
on_message_gen = on_message_generator()
next_message = on_message_gen.__next__() # Start the generator
while True:
if next_message is None: # If the generator is ready for a new message
msg = input(f'{user}{interface} ')
if len(msg.strip()) > 0:
next_message = on_message_gen.send(msg) # Send the message to the generator and receive the next yield
else:
print('Error: please say something')
else: # If the generator has yielded part of the response
print(next_message, end='', flush=True)
next_message = next(on_message_gen) # Get the next part of the response