models: - model: CultriX/SeQwence-14Bv1 parameters: weight: 0.22 # Boosted slightly to improve general task performance density: 0.62 # Prioritize generalist adaptability - model: allknowingroger/QwenSlerp6-14B parameters: weight: 0.18 density: 0.59 # Slight increase to enhance contextual reasoning (tinyHellaswag) - model: CultriX/Qwen2.5-14B-Wernickev3 parameters: weight: 0.16 density: 0.56 # Minor increase to stabilize GPQA and MUSR performance - model: CultriX/Qwen2.5-14B-Emergedv3 parameters: weight: 0.15 # Increase weight for domain-specific expertise density: 0.55 - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO parameters: weight: 0.12 density: 0.56 # Enhance factual reasoning and IFEval contributions - model: CultriX/Qwen2.5-14B-Unity parameters: weight: 0.10 density: 0.53 - model: qingy2019/Qwen2.5-Math-14B-Instruct parameters: weight: 0.10 density: 0.51 # Retain focus on MATH and advanced reasoning tasks merge_method: dare_ties base_model: CultriX/SeQwence-14Bv1 parameters: normalize: true int8_mask: true dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-14B-Instruct adaptive_merge_parameters: task_weights: IFEval: 1.5 # Strengthened for better instruction-following BBH: 1.3 MATH: 1.6 # Emphasize advanced reasoning and problem-solving GPQA: 1.4 # Improve factual recall and logical QA tasks MUSR: 1.5 # Strengthened multi-step reasoning capabilities MMLU-PRO: 1.3 # Slight boost for domain-specific multitask knowledge smoothing_factor: 0.19 # Refined for smoother blending of task strengths gradient_clipping: 0.88 # Tightened slightly for precise parameter contribution