--- base_model: - VAGOsolutions/SauerkrautLM-v2-14b-DPO - qingy2019/Qwen2.5-Math-14B-Instruct - CultriX/Qwen2.5-14B-Wernickev3 - CultriX/SeQwence-14Bv1 - CultriX/Qwen2.5-14B-Emergedv3 - CultriX/Qwen2.5-14B-Unity - allknowingroger/QwenSlerp6-14B library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [CultriX/SeQwence-14Bv1](https://huggingface.co/CultriX/SeQwence-14Bv1) as a base. ### Models Merged The following models were included in the merge: * [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO) * [qingy2019/Qwen2.5-Math-14B-Instruct](https://huggingface.co/qingy2019/Qwen2.5-Math-14B-Instruct) * [CultriX/Qwen2.5-14B-Wernickev3](https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3) * [CultriX/Qwen2.5-14B-Emergedv3](https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3) * [CultriX/Qwen2.5-14B-Unity](https://huggingface.co/CultriX/Qwen2.5-14B-Unity) * [allknowingroger/QwenSlerp6-14B](https://huggingface.co/allknowingroger/QwenSlerp6-14B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: CultriX/SeQwence-14Bv1 parameters: weight: 0.22 # Boosted slightly to improve general task performance density: 0.62 # Prioritize generalist adaptability - model: allknowingroger/QwenSlerp6-14B parameters: weight: 0.18 density: 0.59 # Slight increase to enhance contextual reasoning (tinyHellaswag) - model: CultriX/Qwen2.5-14B-Wernickev3 parameters: weight: 0.16 density: 0.56 # Minor increase to stabilize GPQA and MUSR performance - model: CultriX/Qwen2.5-14B-Emergedv3 parameters: weight: 0.15 # Increase weight for domain-specific expertise density: 0.55 - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO parameters: weight: 0.12 density: 0.56 # Enhance factual reasoning and IFEval contributions - model: CultriX/Qwen2.5-14B-Unity parameters: weight: 0.10 density: 0.53 - model: qingy2019/Qwen2.5-Math-14B-Instruct parameters: weight: 0.10 density: 0.51 # Retain focus on MATH and advanced reasoning tasks merge_method: dare_ties base_model: CultriX/SeQwence-14Bv1 parameters: normalize: true int8_mask: true dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-14B-Instruct adaptive_merge_parameters: task_weights: IFEval: 1.5 # Strengthened for better instruction-following BBH: 1.3 MATH: 1.6 # Emphasize advanced reasoning and problem-solving GPQA: 1.4 # Improve factual recall and logical QA tasks MUSR: 1.5 # Strengthened multi-step reasoning capabilities MMLU-PRO: 1.3 # Slight boost for domain-specific multitask knowledge smoothing_factor: 0.19 # Refined for smoother blending of task strengths gradient_clipping: 0.88 # Tightened slightly for precise parameter contribution ```