File size: 9,927 Bytes
c165cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import collections
import functools

import torch.optim
from internal import camera_utils
from internal import configs
from internal import datasets
from internal import image
from internal import math
from internal import models
from internal import ref_utils
from internal import stepfun
from internal import utils
import numpy as np
from torch.utils._pytree import tree_map, tree_flatten
from torch_scatter import segment_coo


class GradientScaler(torch.autograd.Function):
    @staticmethod
    def forward(ctx, colors, sigmas, ray_dist):
        ctx.save_for_backward(ray_dist)
        return colors, sigmas

    @staticmethod
    def backward(ctx, grad_output_colors, grad_output_sigmas):
        (ray_dist,) = ctx.saved_tensors
        scaling = torch.square(ray_dist).clamp(0, 1)
        return grad_output_colors * scaling[..., None], grad_output_sigmas * scaling, None


def tree_reduce(fn, tree, initializer=0):
    return functools.reduce(fn, tree_flatten(tree)[0], initializer)


def tree_sum(tree):
    return tree_reduce(lambda x, y: x + y, tree, initializer=0)


def tree_norm_sq(tree):
    return tree_sum(tree_map(lambda x: torch.sum(x ** 2), tree))


def tree_norm(tree):
    return torch.sqrt(tree_norm_sq(tree))


def tree_abs_max(tree):
    return tree_reduce(
        lambda x, y: max(x, torch.abs(y).max().item()), tree, initializer=0)


def tree_len(tree):
    return tree_sum(tree_map(lambda z: np.prod(z.shape), tree))


def summarize_tree(tree, fn, ancestry=(), max_depth=3):
    """Flatten 'tree' while 'fn'-ing values and formatting keys like/this."""
    stats = {}
    for k, v in tree.items():
        name = ancestry + (k,)
        stats['/'.join(name)] = fn(v)
        if hasattr(v, 'items') and len(ancestry) < (max_depth - 1):
            stats.update(summarize_tree(v, fn, ancestry=name, max_depth=max_depth))
    return stats


def compute_data_loss(batch, renderings, config):
    """Computes data loss terms for RGB, normal, and depth outputs."""
    data_losses = []
    stats = collections.defaultdict(lambda: [])

    # lossmult can be used to apply a weight to each ray in the batch.
    # For example: masking out rays, applying the Bayer mosaic mask, upweighting
    # rays from lower resolution images and so on.
    lossmult = batch['lossmult']
    lossmult = torch.broadcast_to(lossmult, batch['rgb'][..., :3].shape)
    if config.disable_multiscale_loss:
        lossmult = torch.ones_like(lossmult)

    for rendering in renderings:
        resid_sq = (rendering['rgb'] - batch['rgb'][..., :3]) ** 2
        denom = lossmult.sum()
        stats['mses'].append(((lossmult * resid_sq).sum() / denom).item())

        if config.data_loss_type == 'mse':
            # Mean-squared error (L2) loss.
            data_loss = resid_sq
        elif config.data_loss_type == 'charb':
            # Charbonnier loss.
            data_loss = torch.sqrt(resid_sq + config.charb_padding ** 2)
        elif config.data_loss_type == 'rawnerf':
            # Clip raw values against 1 to match sensor overexposure behavior.
            rgb_render_clip = rendering['rgb'].clamp_max(1)
            resid_sq_clip = (rgb_render_clip - batch['rgb'][..., :3]) ** 2
            # Scale by gradient of log tonemapping curve.
            scaling_grad = 1. / (1e-3 + rgb_render_clip.detach())
            # Reweighted L2 loss.
            data_loss = resid_sq_clip * scaling_grad ** 2
        else:
            assert False
        data_losses.append((lossmult * data_loss).sum() / denom)

        if config.compute_disp_metrics:
            # Using mean to compute disparity, but other distance statistics can
            # be used instead.
            disp = 1 / (1 + rendering['distance_mean'])
            stats['disparity_mses'].append(((disp - batch['disps']) ** 2).mean().item())

        if config.compute_normal_metrics:
            if 'normals' in rendering:
                weights = rendering['acc'] * batch['alphas']
                normalized_normals_gt = ref_utils.l2_normalize(batch['normals'])
                normalized_normals = ref_utils.l2_normalize(rendering['normals'])
                normal_mae = ref_utils.compute_weighted_mae(weights, normalized_normals,
                                                            normalized_normals_gt)
            else:
                # If normals are not computed, set MAE to NaN.
                normal_mae = torch.nan
            stats['normal_maes'].append(normal_mae.item())

    loss = (
            config.data_coarse_loss_mult * sum(data_losses[:-1]) +
            config.data_loss_mult * data_losses[-1])

    stats = {k: np.array(stats[k]) for k in stats}
    return loss, stats


def interlevel_loss(ray_history, config):
    """Computes the interlevel loss defined in mip-NeRF 360."""
    # Stop the gradient from the interlevel loss onto the NeRF MLP.
    last_ray_results = ray_history[-1]
    c = last_ray_results['sdist'].detach()
    w = last_ray_results['weights'].detach()
    loss_interlevel = 0.
    for ray_results in ray_history[:-1]:
        cp = ray_results['sdist']
        wp = ray_results['weights']
        loss_interlevel += stepfun.lossfun_outer(c, w, cp, wp).mean()
    return config.interlevel_loss_mult * loss_interlevel


def anti_interlevel_loss(ray_history, config):
    """Computes the interlevel loss defined in mip-NeRF 360."""
    last_ray_results = ray_history[-1]
    c = last_ray_results['sdist'].detach()
    w = last_ray_results['weights'].detach()
    w_normalize = w / (c[..., 1:] - c[..., :-1])
    loss_anti_interlevel = 0.
    for i, ray_results in enumerate(ray_history[:-1]):
        cp = ray_results['sdist']
        wp = ray_results['weights']
        c_, w_ = stepfun.blur_stepfun(c, w_normalize, config.pulse_width[i])

        # piecewise linear pdf to piecewise quadratic cdf
        area = 0.5 * (w_[..., 1:] + w_[..., :-1]) * (c_[..., 1:] - c_[..., :-1])

        cdf = torch.cat([torch.zeros_like(area[..., :1]), torch.cumsum(area, dim=-1)], dim=-1)

        # query piecewise quadratic interpolation
        cdf_interp = math.sorted_interp_quad(cp, c_, w_, cdf)
        # difference between adjacent interpolated values
        w_s = torch.diff(cdf_interp, dim=-1)

        loss_anti_interlevel += ((w_s - wp).clamp_min(0) ** 2 / (wp + 1e-5)).mean()
    return config.anti_interlevel_loss_mult * loss_anti_interlevel


def distortion_loss(ray_history, config):
    """Computes the distortion loss regularizer defined in mip-NeRF 360."""
    last_ray_results = ray_history[-1]
    c = last_ray_results['sdist']
    w = last_ray_results['weights']
    loss = stepfun.lossfun_distortion(c, w).mean()
    return config.distortion_loss_mult * loss


def orientation_loss(batch, model, ray_history, config):
    """Computes the orientation loss regularizer defined in ref-NeRF."""
    total_loss = 0.
    for i, ray_results in enumerate(ray_history):
        w = ray_results['weights']
        n = ray_results[config.orientation_loss_target]
        if n is None:
            raise ValueError('Normals cannot be None if orientation loss is on.')
        # Negate viewdirs to represent normalized vectors from point to camera.
        v = -1. * batch['viewdirs']
        n_dot_v = (n * v[..., None, :]).sum(dim=-1)
        loss = (w * n_dot_v.clamp_min(0) ** 2).sum(dim=-1).mean()
        if i < model.num_levels - 1:
            total_loss += config.orientation_coarse_loss_mult * loss
        else:
            total_loss += config.orientation_loss_mult * loss
    return total_loss


def hash_decay_loss(ray_history, config):
    total_loss = 0.
    for i, ray_results in enumerate(ray_history):
        total_loss += config.hash_decay_mults * ray_results['loss_hash_decay']
    return total_loss


def opacity_loss(renderings, config):
    total_loss = 0.
    for i, rendering in enumerate(renderings):
        o = rendering['acc']
        total_loss += config.opacity_loss_mult * (-o * torch.log(o + 1e-5)).mean()
    return total_loss


def predicted_normal_loss(model, ray_history, config):
    """Computes the predicted normal supervision loss defined in ref-NeRF."""
    total_loss = 0.
    for i, ray_results in enumerate(ray_history):
        w = ray_results['weights']
        n = ray_results['normals']
        n_pred = ray_results['normals_pred']
        if n is None or n_pred is None:
            raise ValueError(
                'Predicted normals and gradient normals cannot be None if '
                'predicted normal loss is on.')
        loss = torch.mean((w * (1.0 - torch.sum(n * n_pred, dim=-1))).sum(dim=-1))
        if i < model.num_levels - 1:
            total_loss += config.predicted_normal_coarse_loss_mult * loss
        else:
            total_loss += config.predicted_normal_loss_mult * loss
    return total_loss


def clip_gradients(model, accelerator, config):
    """Clips gradients of MLP based on norm and max value."""
    if config.grad_max_norm > 0 and accelerator.sync_gradients:
        accelerator.clip_grad_norm_(model.parameters(), config.grad_max_norm)

    if config.grad_max_val > 0 and accelerator.sync_gradients:
        accelerator.clip_grad_value_(model.parameters(), config.grad_max_val)

    for param in model.parameters():
        param.grad.nan_to_num_()


def create_optimizer(config: configs.Config, model):
    """Creates optax optimizer for model training."""
    adam_kwargs = {
        'betas': [config.adam_beta1, config.adam_beta2],
        'eps': config.adam_eps,
    }
    lr_kwargs = {
        'max_steps': config.max_steps,
        'lr_delay_steps': config.lr_delay_steps,
        'lr_delay_mult': config.lr_delay_mult,
    }

    lr_fn_main = lambda step: math.learning_rate_decay(
        step,
        lr_init=config.lr_init,
        lr_final=config.lr_final,
        **lr_kwargs)
    optimizer = torch.optim.Adam(model.parameters(), lr=config.lr_init, **adam_kwargs)

    return optimizer, lr_fn_main