--- license: apache-2.0 datasets: - openbmb/UltraInteract_pair language: - en base_model: meta-llama/Meta-Llama-3-8B-Instruct --- This is a model released for our paper: [Regressing the Relative Future: Efficient Policy Optimization for Multi-turn RLHF](https://arxiv.org/abs/2410.04612). # REFUEL-Llama-3-Armo-iter_1 This model is developed with REFUEL based on [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) with [ArmoRM-Llama3-8B-v0.1](https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-v0.1) as the reward model and [UltraInteract](https://huggingface.co/datasets/openbmb/UltraInteract_pair) dataset. The training code is available at https://github.com/ZhaolinGao/REFUEL. ## Evaluations
Method | Dataset | Winrate at Turn | |||||
---|---|---|---|---|---|---|---|
h = 1 | h = 2 | h = 3 | h = 4 | H = 5 | avg | ||
Llama-3.1-70B-it | N/A | 70.4 | 66.4 | 61.0 | 53.0 | 55.4 | 61.24 |
REFUEL-Llama-3-Armo-iter_1 | REFUEL-Ultrainteract-Llama-3-Armo-iter_1 | 54.6 | 53.6 | 57.8 | 56.2 | 59.4 | 56.32 |
REFUEL-Llama-3-Armo-iter_2 | REFUEL-Ultrainteract-Llama-3-Armo-iter_2 | 55.2 | 53.4 | 58.8 | 57.2 | 58.6 | 56.64 |