dataautogpt3 commited on
Commit
b62695d
·
verified ·
1 Parent(s): 9f7564a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -3
README.md CHANGED
@@ -49,16 +49,23 @@ license: apache-2.0
49
 
50
  # Mobius: Redefining State-of-the-Art in Debiased Diffusion Models
51
 
52
- Mobius, a revolutionary diffusion model, pushes the boundaries of domain-agnostic debiasing and representation realignment. By employing the cutting-edge constructive deconstruction framework, Mobius achieves unrivaled generalization across a vast array of styles and domains, eliminating the need for expensive pretraining from scratch.
53
 
54
  # Domain-Agnostic Debiasing: A Groundbreaking Approach
55
 
56
  Domain-agnostic debiasing is a novel technique pioneered Corcel. This innovative approach aims to remove biases inherent in diffusion models without limiting their ability to generalize across diverse domains. Traditional debiasing methods often focus on specific domains or styles, resulting in models that struggle to adapt to new or unseen contexts. In contrast, domain-agnostic debiasing ensures that the model remains unbiased while maintaining its versatility and adaptability.
57
 
58
- The key to domain-agnostic debiasing lies in the constructive deconstruction framework, a proprietary method developed by the Corcel Diffusion team. This framework allows for fine-grained reworking of biases and representations without the need for pretraining from scratch. The technical details of this groundbreaking approach will be discussed in an upcoming research paper, "Constructive Deconstruction: Domain-Agnostic Debiasing of Diffusion Models," which will be made available on the Corcel.io website and through scientific publications.
59
 
60
  By applying domain-agnostic debiasing, Mobius sets a new standard for fairness and impartiality in image generation while maintaining its exceptional ability to adapt to a wide range of styles and domains.
61
 
 
 
 
 
 
 
 
62
  # Surpassing the State-of-the-Art
63
 
64
  Mobius outperforms existing state-of-the-art diffusion models in several key areas:
@@ -72,7 +79,7 @@ Efficient fine-tuning: The Mobius base model serves as a superior foundation for
72
 
73
  # Recommendations
74
 
75
- - a CFG of either 3.5 to 7
76
  - Requires a CLIP skip of -3
77
  - Sampler: DPM++ 3M SDE
78
  - Scheduler: Karras
 
49
 
50
  # Mobius: Redefining State-of-the-Art in Debiased Diffusion Models
51
 
52
+ Mobius, a diffusion model that pushes the boundaries of domain-agnostic debiasing and representation realignment. By employing a brand new constructive deconstruction framework, Mobius achieves unrivaled generalization across a vast array of styles and domains, eliminating the need for expensive pretraining from scratch.
53
 
54
  # Domain-Agnostic Debiasing: A Groundbreaking Approach
55
 
56
  Domain-agnostic debiasing is a novel technique pioneered Corcel. This innovative approach aims to remove biases inherent in diffusion models without limiting their ability to generalize across diverse domains. Traditional debiasing methods often focus on specific domains or styles, resulting in models that struggle to adapt to new or unseen contexts. In contrast, domain-agnostic debiasing ensures that the model remains unbiased while maintaining its versatility and adaptability.
57
 
58
+ The key to domain-agnostic debiasing lies in the constructive deconstruction framework. This framework allows for fine-grained reworking of biases and representations without the need for pretraining from scratch. The technical details of this groundbreaking approach will be discussed in an upcoming research paper, "Constructive Deconstruction: Domain-Agnostic Debiasing of Diffusion Models," which will be made available on the Corcel.io website and through scientific publications.
59
 
60
  By applying domain-agnostic debiasing, Mobius sets a new standard for fairness and impartiality in image generation while maintaining its exceptional ability to adapt to a wide range of styles and domains.
61
 
62
+
63
+ Mobius outperforms existing state-of-the-art diffusion models in several key areas:
64
+
65
+ Unbiased generation: Mobius generates images have siginifcantly reduced inherent biases commonly found in other diffusion models, setting a new benchmark for fairness and impartiality across all domains.
66
+
67
+ Exceptional generalization: With its unparalleled ability to adapt to an extensive range of styles and domains, Mobius consistently delivers top-quality results, surpassing the limitations of previous models.
68
+
69
  # Surpassing the State-of-the-Art
70
 
71
  Mobius outperforms existing state-of-the-art diffusion models in several key areas:
 
79
 
80
  # Recommendations
81
 
82
+ - a CFG between 3.5 and 7
83
  - Requires a CLIP skip of -3
84
  - Sampler: DPM++ 3M SDE
85
  - Scheduler: Karras