Commit
·
1ccd57b
verified
·
0
Parent(s):
Duplicate from MBZUAI/AIN
Browse filesCo-authored-by: Ahmed Heakl <[email protected]>
- .gitattributes +44 -0
- README.md +622 -0
- added_tokens.json +16 -0
- assets_hf/.DS_Store +0 -0
- assets_hf/AIN.png +3 -0
- assets_hf/Eval_CAMEL.png +3 -0
- assets_hf/ain_can_see.png +3 -0
- assets_hf/demo_image.jpeg +3 -0
- assets_hf/intro_bar.png +0 -0
- assets_hf/qualitative.png +3 -0
- assets_hf/radar_chart.png +3 -0
- assets_hf/toxicity.png +3 -0
- assets_hf/verify_pipeline.png +3 -0
- chat_template.json +3 -0
- config.json +47 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +737 -0
- preprocessor_config.json +29 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +144 -0
- vocab.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
assets_hf/ain_can_see.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
assets_hf/AIN.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
assets_hf/Eval_CAMEL.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
assets_hf/qualitative.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
assets_hf/radar_chart.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
assets_hf/toxicity.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
assets_hf/verify_pipeline.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
assets_hf/demo_image.jpeg filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- ar
|
6 |
+
base_model:
|
7 |
+
- qwen2-VL-7B
|
8 |
+
pipeline_tag: image-text-to-text
|
9 |
+
tags:
|
10 |
+
- LMM
|
11 |
+
- Arabic
|
12 |
+
- OCR
|
13 |
+
---
|
14 |
+
|
15 |
+
|
16 |
+
<div style="display: flex; align-items: center;">
|
17 |
+
<img src="assets_hf/AIN.png" width="10%" alt="logo" style="margin-right: 10px;" />
|
18 |
+
<h1 style="margin: 0; font-size: 28px;";">AIN: The Arabic INclusive Large Multimodal Model</h1>
|
19 |
+
</div>
|
20 |
+
|
21 |
+
[Ahmed Heakl](https://huggingface.co/ahmedheakl) <sup> * </sup>
|
22 |
+
[Sara Ghaboura](https://huggingface.co/SLMLAH) <sup> * </sup>
|
23 |
+
[Omkar Thawakar](https://omkarthawakar.github.io)
|
24 |
+
[Fahad Shahbaz Khan](https://scholar.google.com/citations?hl=en&user=zvaeYnUAAAAJ)
|
25 |
+
[Hisham Cholakkal](https://scholar.google.com/citations?hl=en&user=bZ3YBRcAAAAJ)
|
26 |
+
[Rao M. Anwer](https://scholar.google.com/citations?hl=en&user=_KlvMVoAAAAJ)
|
27 |
+
[Salman Khan](https://scholar.google.com/citations?hl=en&user=M59O9lkAAAAJ)
|
28 |
+
<br>
|
29 |
+
<em> <sup> *Equal Contribution </sup> </em>
|
30 |
+
<br>
|
31 |
+
#### **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE**
|
32 |
+
[](https://arxiv.org/abs/2502.00094)
|
33 |
+
[](https://mbzuai-oryx.github.io/AIN/)
|
34 |
+
[](https://github.com/mbzuai-oryx/AIN)
|
35 |
+
[](https://github.com/mbzuai-oryx/AIN/issues)
|
36 |
+
[](https://github.com/mbzuai-oryx/AIN/stargazers)
|
37 |
+
[](https://github.com/mbzuai-oryx/AIN/blob/main/LICENSE)
|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
|
42 |
+
<div class="abstract-container">
|
43 |
+
<h2>Abstract</h2>
|
44 |
+
<div class="abstract-content">
|
45 |
+
<p>
|
46 |
+
Amid the swift progress of large language models (LLMs) and their evolution into large multimodal models (LMMs), significant strides have been made in high-resource languages such as English and Chinese. While Arabic LLMs have seen notable progress, Arabic LMMs remain largely unexplored, often narrowly focusing on a few specific aspects of the language and visual understanding. To bridge this gap, we introduce <b><em>AIN - the Arabic Inclusive Multimodal Model-</em></b> designed to excel across diverse domains.
|
47 |
+
AIN is an English-Arabic <b>bilingual LMM</b> designed to excel in English and Arabic, leveraging carefully constructed <b>3.6 million</b> high-quality Arabic-English multimodal data samples. AIN demonstrates state-of-the-art Arabic performance, while also possessing strong English-language visual capabilities.
|
48 |
+
</p>
|
49 |
+
</div>
|
50 |
+
</div>
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
## 🌟 Key Features
|
55 |
+
- The **first Arabic-centric inclusive Large Multimodal Model (LMM)** trained on **3.6M samples**.
|
56 |
+
- Includes **35% authentic Arabic data** within its Arabic data subset.
|
57 |
+
- Achieves **superior performance compared to open- and closed-source models** (e.g., GPT-4o) and open-source models (e.g., Qwen2-VL-7B) across tasks such as OCR and specialized domains.
|
58 |
+
- Demonstrates **robust bilingual capabilities** (Arabic/English), **validated** through **comprehensive testing** and **human evaluation** across 17 Arab countries.
|
59 |
+
- Exhibits **advanced cultural understanding** and domain expertise in fields such as **medical imaging**, **agriculture**, and **scientific visualization**.
|
60 |
+
|
61 |
+
|
62 |
+
<p align="center">
|
63 |
+
<img src="assets_hf/intro_bar.png" width="70%" alt="intro_bar" style="margin-right: 2px";/>
|
64 |
+
<h6>
|
65 |
+
<em> <b>Figure 1.</b> Comparative performance of AIN-7B against other models across key domains, including OCR & Document Understanding, Remote Sensing, Agricultural Understanding, and overall performance across all domains. </em>
|
66 |
+
</h6>
|
67 |
+
</p>
|
68 |
+
|
69 |
+
<p align="center" >
|
70 |
+
<img src="assets_hf/radar_chart.png" width="52%" alt="radar_chart" style="margin-right: 2px";/>
|
71 |
+
<h6>
|
72 |
+
<em> <b>Figure 2.</b> showcases a comprehensive performance analysis of AIN-7B across CAMEL-Bench domains, comparing it with prominent closed-source models as well as open-source counterparts. <strong>OCR:</strong> "OCR & Document Understanding", <strong>Video:</strong> "General Video & Multi-Image Understanding", <strong>RS:</strong> "Remote Sensing Understanding", <strong>CDT:</strong> "Chart, Diagram & Table Understanding", <strong>Agro.:</strong> "Agricultural Image Understanding", <strong>Cultural:</strong> "Cultural-Specific Understanding", <strong>Medical:</strong> "Medical Image Understanding".
|
73 |
+
</em>
|
74 |
+
</h6>
|
75 |
+
|
76 |
+
---
|
77 |
+
## ⚖️ Quick Start
|
78 |
+
Please install the qwen vision kit. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
|
79 |
+
|
80 |
+
```bash
|
81 |
+
pip install qwen-vl-utils
|
82 |
+
```
|
83 |
+
|
84 |
+
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
|
85 |
+
|
86 |
+
```python
|
87 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
88 |
+
from qwen_vl_utils import process_vision_info
|
89 |
+
# default: Load the model on the available device(s)
|
90 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
91 |
+
"MBZUAI/AIN", torch_dtype="auto", device_map="auto"
|
92 |
+
)
|
93 |
+
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
94 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
95 |
+
# "MBZUAI/AIN",
|
96 |
+
# torch_dtype=torch.bfloat16,
|
97 |
+
# attn_implementation="flash_attention_2",
|
98 |
+
# device_map="auto",
|
99 |
+
# )
|
100 |
+
# default processer
|
101 |
+
processor = AutoProcessor.from_pretrained("MBZUAI/AIN")
|
102 |
+
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
103 |
+
# min_pixels = 256*28*28
|
104 |
+
# max_pixels = 1280*28*28
|
105 |
+
# processor = AutoProcessor.from_pretrained("MBZUAI/AIN", min_pixels=min_pixels, max_pixels=max_pixels)
|
106 |
+
messages = [
|
107 |
+
{
|
108 |
+
"role": "user",
|
109 |
+
"content": [
|
110 |
+
{
|
111 |
+
"type": "image",
|
112 |
+
"image": "https://huggingface.co/MBZUAI/AIN/resolve/main/assets_hf/demo_image.jpeg",
|
113 |
+
},
|
114 |
+
{"type": "text", "text": "يرجى وصف هذه الصورة."},
|
115 |
+
],
|
116 |
+
}
|
117 |
+
]
|
118 |
+
# Preparation for inference
|
119 |
+
text = processor.apply_chat_template(
|
120 |
+
messages, tokenize=False, add_generation_prompt=True
|
121 |
+
)
|
122 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
123 |
+
inputs = processor(
|
124 |
+
text=[text],
|
125 |
+
images=image_inputs,
|
126 |
+
videos=video_inputs,
|
127 |
+
padding=True,
|
128 |
+
return_tensors="pt",
|
129 |
+
)
|
130 |
+
inputs = inputs.to("cuda")
|
131 |
+
# Inference: Generation of the output
|
132 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
133 |
+
generated_ids_trimmed = [
|
134 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
135 |
+
]
|
136 |
+
output_text = processor.batch_decode(
|
137 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
138 |
+
)
|
139 |
+
print(output_text)
|
140 |
+
```
|
141 |
+
<details>
|
142 |
+
<summary>Without qwen_vl_utils</summary>
|
143 |
+
|
144 |
+
```python
|
145 |
+
from PIL import Image
|
146 |
+
import requests
|
147 |
+
import torch
|
148 |
+
from torchvision import io
|
149 |
+
from typing import Dict
|
150 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
151 |
+
# Load the model in half-precision on the available device(s)
|
152 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
153 |
+
"MBZUAI/AIN", torch_dtype="auto", device_map="auto"
|
154 |
+
)
|
155 |
+
processor = AutoProcessor.from_pretrained("MBZUAI/AIN")
|
156 |
+
# Image
|
157 |
+
url = "https://huggingface.co/MBZUAI/AIN/resolve/main/assets_hf/demo_image.jpeg"
|
158 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
159 |
+
conversation = [
|
160 |
+
{
|
161 |
+
"role": "user",
|
162 |
+
"content": [
|
163 |
+
{
|
164 |
+
"type": "image",
|
165 |
+
},
|
166 |
+
{"type": "text", "text": "Describe this image in Arabic."},
|
167 |
+
],
|
168 |
+
}
|
169 |
+
]
|
170 |
+
# Preprocess the inputs
|
171 |
+
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
172 |
+
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'
|
173 |
+
inputs = processor(
|
174 |
+
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
|
175 |
+
)
|
176 |
+
inputs = inputs.to("cuda")
|
177 |
+
# Inference: Generation of the output
|
178 |
+
output_ids = model.generate(**inputs, max_new_tokens=128)
|
179 |
+
generated_ids = [
|
180 |
+
output_ids[len(input_ids) :]
|
181 |
+
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
182 |
+
]
|
183 |
+
output_text = processor.batch_decode(
|
184 |
+
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
185 |
+
)
|
186 |
+
print(output_text)
|
187 |
+
```
|
188 |
+
</details>
|
189 |
+
<details>
|
190 |
+
<summary>Multi image inference</summary>
|
191 |
+
|
192 |
+
```python
|
193 |
+
# Messages containing multiple images and a text query
|
194 |
+
messages = [
|
195 |
+
{
|
196 |
+
"role": "user",
|
197 |
+
"content": [
|
198 |
+
{"type": "image", "image": "file:///path/to/image1.jpg"},
|
199 |
+
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
200 |
+
{"type": "text", "text": "Identify the similarities between these images."},
|
201 |
+
],
|
202 |
+
}
|
203 |
+
]
|
204 |
+
# Preparation for inference
|
205 |
+
text = processor.apply_chat_template(
|
206 |
+
messages, tokenize=False, add_generation_prompt=True
|
207 |
+
)
|
208 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
209 |
+
inputs = processor(
|
210 |
+
text=[text],
|
211 |
+
images=image_inputs,
|
212 |
+
videos=video_inputs,
|
213 |
+
padding=True,
|
214 |
+
return_tensors="pt",
|
215 |
+
)
|
216 |
+
inputs = inputs.to("cuda")
|
217 |
+
# Inference
|
218 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
219 |
+
generated_ids_trimmed = [
|
220 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
221 |
+
]
|
222 |
+
output_text = processor.batch_decode(
|
223 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
224 |
+
)
|
225 |
+
print(output_text)
|
226 |
+
```
|
227 |
+
</details>
|
228 |
+
|
229 |
+
<details>
|
230 |
+
<summary>Video inference</summary>
|
231 |
+
|
232 |
+
```python
|
233 |
+
# Messages containing a images list as a video and a text query
|
234 |
+
messages = [
|
235 |
+
{
|
236 |
+
"role": "user",
|
237 |
+
"content": [
|
238 |
+
{
|
239 |
+
"type": "video",
|
240 |
+
"video": [
|
241 |
+
"file:///path/to/frame1.jpg",
|
242 |
+
"file:///path/to/frame2.jpg",
|
243 |
+
"file:///path/to/frame3.jpg",
|
244 |
+
"file:///path/to/frame4.jpg",
|
245 |
+
],
|
246 |
+
"fps": 1.0,
|
247 |
+
},
|
248 |
+
{"type": "text", "text": "Describe this video."},
|
249 |
+
],
|
250 |
+
}
|
251 |
+
]
|
252 |
+
# Messages containing a video and a text query
|
253 |
+
messages = [
|
254 |
+
{
|
255 |
+
"role": "user",
|
256 |
+
"content": [
|
257 |
+
{
|
258 |
+
"type": "video",
|
259 |
+
"video": "file:///path/to/video1.mp4",
|
260 |
+
"max_pixels": 360 * 420,
|
261 |
+
"fps": 1.0,
|
262 |
+
},
|
263 |
+
{"type": "text", "text": "Describe this video."},
|
264 |
+
],
|
265 |
+
}
|
266 |
+
]
|
267 |
+
# Preparation for inference
|
268 |
+
text = processor.apply_chat_template(
|
269 |
+
messages, tokenize=False, add_generation_prompt=True
|
270 |
+
)
|
271 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
272 |
+
inputs = processor(
|
273 |
+
text=[text],
|
274 |
+
images=image_inputs,
|
275 |
+
videos=video_inputs,
|
276 |
+
padding=True,
|
277 |
+
return_tensors="pt",
|
278 |
+
)
|
279 |
+
inputs = inputs.to("cuda")
|
280 |
+
# Inference
|
281 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
282 |
+
generated_ids_trimmed = [
|
283 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
284 |
+
]
|
285 |
+
output_text = processor.batch_decode(
|
286 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
287 |
+
)
|
288 |
+
print(output_text)
|
289 |
+
```
|
290 |
+
</details>
|
291 |
+
|
292 |
+
<details>
|
293 |
+
<summary>Batch inference</summary>
|
294 |
+
|
295 |
+
```python
|
296 |
+
# Sample messages for batch inference
|
297 |
+
messages1 = [
|
298 |
+
{
|
299 |
+
"role": "user",
|
300 |
+
"content": [
|
301 |
+
{"type": "image", "image": "file:///path/to/image1.jpg"},
|
302 |
+
{"type": "image", "image": "file:///path/to/image2.jpg"},
|
303 |
+
{"type": "text", "text": "What are the common elements in these pictures?"},
|
304 |
+
],
|
305 |
+
}
|
306 |
+
]
|
307 |
+
messages2 = [
|
308 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
309 |
+
{"role": "user", "content": "Who are you?"},
|
310 |
+
]
|
311 |
+
# Combine messages for batch processing
|
312 |
+
messages = [messages1, messages1]
|
313 |
+
# Preparation for batch inference
|
314 |
+
texts = [
|
315 |
+
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
|
316 |
+
for msg in messages
|
317 |
+
]
|
318 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
319 |
+
inputs = processor(
|
320 |
+
text=texts,
|
321 |
+
images=image_inputs,
|
322 |
+
videos=video_inputs,
|
323 |
+
padding=True,
|
324 |
+
return_tensors="pt",
|
325 |
+
)
|
326 |
+
inputs = inputs.to("cuda")
|
327 |
+
# Batch Inference
|
328 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
329 |
+
generated_ids_trimmed = [
|
330 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
331 |
+
]
|
332 |
+
output_texts = processor.batch_decode(
|
333 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
334 |
+
)
|
335 |
+
print(output_texts)
|
336 |
+
```
|
337 |
+
</details>
|
338 |
+
|
339 |
+
### More Usage Tips
|
340 |
+
|
341 |
+
For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
|
342 |
+
|
343 |
+
```python
|
344 |
+
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
|
345 |
+
## Local file path
|
346 |
+
messages = [
|
347 |
+
{
|
348 |
+
"role": "user",
|
349 |
+
"content": [
|
350 |
+
{"type": "image", "image": "file:///path/to/your/image.jpg"},
|
351 |
+
{"type": "text", "text": "Describe this image."},
|
352 |
+
],
|
353 |
+
}
|
354 |
+
]
|
355 |
+
## Image URL
|
356 |
+
messages = [
|
357 |
+
{
|
358 |
+
"role": "user",
|
359 |
+
"content": [
|
360 |
+
{"type": "image", "image": "http://path/to/your/image.jpg"},
|
361 |
+
{"type": "text", "text": "Describe this image."},
|
362 |
+
],
|
363 |
+
}
|
364 |
+
]
|
365 |
+
## Base64 encoded image
|
366 |
+
messages = [
|
367 |
+
{
|
368 |
+
"role": "user",
|
369 |
+
"content": [
|
370 |
+
{"type": "image", "image": "data:image;base64,/9j/..."},
|
371 |
+
{"type": "text", "text": "Describe this image."},
|
372 |
+
],
|
373 |
+
}
|
374 |
+
]
|
375 |
+
```
|
376 |
+
#### Image Resolution for performance boost
|
377 |
+
|
378 |
+
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
379 |
+
|
380 |
+
```python
|
381 |
+
min_pixels = 256 * 28 * 28
|
382 |
+
max_pixels = 1280 * 28 * 28
|
383 |
+
processor = AutoProcessor.from_pretrained(
|
384 |
+
"MBZUAI/AIN", min_pixels=min_pixels, max_pixels=max_pixels
|
385 |
+
)
|
386 |
+
```
|
387 |
+
|
388 |
+
Besides, We provide two methods for fine-grained control over the image size input to the model:
|
389 |
+
|
390 |
+
1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
|
391 |
+
|
392 |
+
2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
|
393 |
+
|
394 |
+
```python
|
395 |
+
# min_pixels and max_pixels
|
396 |
+
messages = [
|
397 |
+
{
|
398 |
+
"role": "user",
|
399 |
+
"content": [
|
400 |
+
{
|
401 |
+
"type": "image",
|
402 |
+
"image": "file:///path/to/your/image.jpg",
|
403 |
+
"resized_height": 280,
|
404 |
+
"resized_width": 420,
|
405 |
+
},
|
406 |
+
{"type": "text", "text": "Describe this image."},
|
407 |
+
],
|
408 |
+
}
|
409 |
+
]
|
410 |
+
# resized_height and resized_width
|
411 |
+
messages = [
|
412 |
+
{
|
413 |
+
"role": "user",
|
414 |
+
"content": [
|
415 |
+
{
|
416 |
+
"type": "image",
|
417 |
+
"image": "file:///path/to/your/image.jpg",
|
418 |
+
"min_pixels": 50176,
|
419 |
+
"max_pixels": 50176,
|
420 |
+
},
|
421 |
+
{"type": "text", "text": "Describe this image."},
|
422 |
+
],
|
423 |
+
}
|
424 |
+
]
|
425 |
+
```
|
426 |
+
|
427 |
+
---
|
428 |
+
## ⚖️ Quantitative Evaluation and Results
|
429 |
+
AIN demonstrates state-of-the-art performance across diverse domains, surpassing both open- and closed-source models. Notably, it achieves an aggregate performance score of 63.77%, with significant gains in OCR, remote sensing, and agricultural image understanding.
|
430 |
+
|
431 |
+
<div align="center" >
|
432 |
+
<table>
|
433 |
+
<caption>
|
434 |
+
<h6>
|
435 |
+
<strong>Table 1. Performance comparison of AIN and different closed- and open-source LMMs across CAMEL-Bench domains.</strong>
|
436 |
+
<br> <em>Best performance is marked with 🥇; second-best is 🥈.</em>
|
437 |
+
<strong>OCR</strong>: "OCR & Document Understanding",
|
438 |
+
<strong>Video</strong>: "General Video & Multi-Image Understanding",
|
439 |
+
<strong>RS</strong>: "Remote Sensing Understanding",
|
440 |
+
<strong>CDT</strong>: "Chart, Diagram & Table Understanding",
|
441 |
+
<strong>Agro.</strong>: "Agricultural Image Understanding",
|
442 |
+
<strong>Cult.</strong>: "Cultural-Specific Understanding",
|
443 |
+
<strong>Med.</strong>: "Medical Image Understanding".
|
444 |
+
</h6>
|
445 |
+
</caption>
|
446 |
+
<thead>
|
447 |
+
<tr style="background-color: #e0e0e0;">
|
448 |
+
<th>Models</th>
|
449 |
+
<th>VQA</th>
|
450 |
+
<th>OCR</th>
|
451 |
+
<th>Video</th>
|
452 |
+
<th>RS</th>
|
453 |
+
<th>CDT</th>
|
454 |
+
<th>Agro.</th>
|
455 |
+
<th>Cult.</th>
|
456 |
+
<th>Med.</th>
|
457 |
+
<th style="background-color: #d0d0d0;">Total</th>
|
458 |
+
</tr>
|
459 |
+
</thead>
|
460 |
+
<tbody>
|
461 |
+
<tr>
|
462 |
+
<td>GPT-4o</td>
|
463 |
+
<td>🥈55.15</td>
|
464 |
+
<td>🥈54.98</td>
|
465 |
+
<td>🥇69.65</td>
|
466 |
+
<td>🥈27.36</td>
|
467 |
+
<td>🥈62.35</td>
|
468 |
+
<td>🥈80.75</td>
|
469 |
+
<td>🥇80.86</td>
|
470 |
+
<td>🥇49.91</td>
|
471 |
+
<td style="background-color: #d0d0d0;">🥈60.13</td>
|
472 |
+
</tr>
|
473 |
+
<tr>
|
474 |
+
<td>GPT-4o-mini</td>
|
475 |
+
<td>48.83</td>
|
476 |
+
<td>39.38</td>
|
477 |
+
<td>🥈66.28</td>
|
478 |
+
<td>16.93</td>
|
479 |
+
<td>56.37</td>
|
480 |
+
<td>78.80</td>
|
481 |
+
<td>65.92</td>
|
482 |
+
<td>🥈47.37</td>
|
483 |
+
<td style="background-color: #d0d0d0;">52.49</td>
|
484 |
+
</tr>
|
485 |
+
<tr>
|
486 |
+
<td>Gemini-1.5-Pro</td>
|
487 |
+
<td>46.68</td>
|
488 |
+
<td>28.68</td>
|
489 |
+
<td>42.95</td>
|
490 |
+
<td>17.07</td>
|
491 |
+
<td>47.06</td>
|
492 |
+
<td>72.14</td>
|
493 |
+
<td>56.24</td>
|
494 |
+
<td>33.78</td>
|
495 |
+
<td style="background-color: #d0d0d0;">52.38</td>
|
496 |
+
</tr>
|
497 |
+
<tr>
|
498 |
+
<td>Gemini-1.5-flash</td>
|
499 |
+
<td>45.59</td>
|
500 |
+
<td>27.58</td>
|
501 |
+
<td>53.31</td>
|
502 |
+
<td>14.95</td>
|
503 |
+
<td>48.26</td>
|
504 |
+
<td>76.07</td>
|
505 |
+
<td>46.54</td>
|
506 |
+
<td>42.87</td>
|
507 |
+
<td style="background-color: #d0d0d0;">44.40</td>
|
508 |
+
</tr>
|
509 |
+
<tr>
|
510 |
+
<td>InternVL-8B </td>
|
511 |
+
<td>30.41 </td>
|
512 |
+
<td>15.91 </td>
|
513 |
+
<td>51.42 </td>
|
514 |
+
<td>5.36 </td>
|
515 |
+
<td>30.27 </td>
|
516 |
+
<td>44.47 </td>
|
517 |
+
<td>20.88 </td>
|
518 |
+
<td>29.48 </td>
|
519 |
+
<td style="background-color: #d0d0d0;">28.52 </td>
|
520 |
+
</tr>
|
521 |
+
<tr>
|
522 |
+
<td>InternVL2.5-1B </td>
|
523 |
+
<td>27.22 </td>
|
524 |
+
<td>19.45 </td>
|
525 |
+
<td>38.20 </td>
|
526 |
+
<td>3.39 </td>
|
527 |
+
<td>30.75 </td>
|
528 |
+
<td>39.53 </td>
|
529 |
+
<td>35.68 </td>
|
530 |
+
<td>21.27 </td>
|
531 |
+
<td style="background-color: #d0d0d0;">26.94 </td>
|
532 |
+
</tr>
|
533 |
+
<tr>
|
534 |
+
<td>Qwen-VL-2B </td>
|
535 |
+
<td>41.02 </td>
|
536 |
+
<td>22.93 </td>
|
537 |
+
<td>38.90 </td>
|
538 |
+
<td>12.56 </td>
|
539 |
+
<td>27.83 </td>
|
540 |
+
<td>52.02 </td>
|
541 |
+
<td>34.28 </td>
|
542 |
+
<td>29.12 </td>
|
543 |
+
<td style="background-color: #d0d0d0;">32.33 </td>
|
544 |
+
</tr>
|
545 |
+
<tr>
|
546 |
+
<td>Qwen2-VL-7B </td>
|
547 |
+
<td>48.76 </td>
|
548 |
+
<td>42.73 </td>
|
549 |
+
<td>61.97 </td>
|
550 |
+
<td>21.30 </td>
|
551 |
+
<td>54.67 </td>
|
552 |
+
<td>79.32 </td>
|
553 |
+
<td>75.96 </td>
|
554 |
+
<td>35.81 </td>
|
555 |
+
<td style="background-color: #d0d0d0;">52.57 </td>
|
556 |
+
</tr>
|
557 |
+
<tr>
|
558 |
+
<td>AIN-7B <em>(ours)</em> </td>
|
559 |
+
<td>🥇56.78 </td>
|
560 |
+
<td>🥇72.35 </td>
|
561 |
+
<td>64.09 </td>
|
562 |
+
<td>🥇45.92 </td>
|
563 |
+
<td>🥇64.10 </td>
|
564 |
+
<td>🥇85.05 </td>
|
565 |
+
<td>🥈78.09 </td>
|
566 |
+
<td>43.77 </td>
|
567 |
+
<td style="background-color: #d0d0d0;">🏆63.77 </td>
|
568 |
+
</tr>
|
569 |
+
</tbody>
|
570 |
+
</table>
|
571 |
+
</div>
|
572 |
+
|
573 |
+
---
|
574 |
+
## 🎯 Qualitative Evaluation
|
575 |
+
The qualitative evaluation showcases AIN's advanced capabilities in handling diverse, complex tasks, including OCR, medical imaging, remote sensing, and cultural-specific understanding, with remarkable precision and contextual relevance. Unlike GPT-4o and LLaVA, AIN demonstrates superior performance in identifying intricate details and maintaining accuracy across varied query formats and multi-domain challenges.
|
576 |
+
|
577 |
+
<div align="center">
|
578 |
+
<img src="assets_hf/qualitative.png" width="75%" alt="qualitative" />
|
579 |
+
<h6>
|
580 |
+
<em> <b>Figure 3.</b> Qualitative examples showcasing AIN-7B’s capabilities across various domains, including general VQA, OCR & Document Understanding, Remote Sensing, Medical Imaging, Agricultural Understanding, and Cultural-Specific tasks. </em>
|
581 |
+
</h6>
|
582 |
+
</div>
|
583 |
+
|
584 |
+
---
|
585 |
+
## 🧐 Data Verification and Toxicity Filtering
|
586 |
+
A multi-step verification pipeline was implemented to ensure high-quality translations and safe visual data. Translation accuracy was assessed through human evaluation, where native Arabic speakers rated outputs against reference translations, and semantic similarity checks were conducted using **LaBSE**. Additionally, translated samples were reverse-translated and validated using **BLEU, METEOR, and ROUGE scores** to measure correctness, correlation, and overlap. For visual data, toxicity filtering was applied using **LLavaGuard’s safety policies and GPT-4o**, identifying and removing unsafe content related to violence, substance abuse, and harmful imagery, ensuring compliance with ethical AI standards.
|
587 |
+
|
588 |
+
<p align="center">
|
589 |
+
<img src="assets_hf/verify_pipeline.png" width="75%" alt="verify" style="margin-right: 2px";/>
|
590 |
+
<h6>
|
591 |
+
<em> <b>Figure 4.</b> Data verification and filtering pipeline for textual and visual data, ensuring high-quality training data through semantic similarity checks, translation quality evaluations, and toxicity screening for safety compliance. </em>
|
592 |
+
</h6>
|
593 |
+
</p>
|
594 |
+
<p align="center">
|
595 |
+
<img src="assets_hf/toxicity.png" width=48%" alt="verify" style="margin-right: 2px";/>
|
596 |
+
<h6>
|
597 |
+
<em> <b>Figure 5.</b> Distribution of visual data toxicity filtering results, showing that 95% of the data is classified as safe, while 5% is identified as unsafe due to categories like weapons or substance abuse, violence, and animal cruelty. </em>
|
598 |
+
</h6>
|
599 |
+
</p>
|
600 |
+
|
601 |
+
---
|
602 |
+
|
603 |
+
## 🔒 License
|
604 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
605 |
+
|
606 |
+
|
607 |
+
## 💬 Contact us
|
608 |
+
For questions or suggestions, feel free to reach out to us on [GitHub Discussions](https://github.com/mbzuai-oryx/AIN/discussions).
|
609 |
+
|
610 |
+
---
|
611 |
+
|
612 |
+
If you use AIN in your research, please cite our work as follows:
|
613 |
+
|
614 |
+
```
|
615 |
+
@misc{heakl2025ainarabicinclusivelarge,
|
616 |
+
title={AIN: The Arabic INclusive Large Multimodal Model},
|
617 |
+
author={Ahmed Heakl and Sara Ghaboura and Omkar Thawkar and Fahad Shahbaz Khan and Hisham Cholakkal and Rao Muhammad Anwer and Salman Khan},
|
618 |
+
year={2025},
|
619 |
+
eprint={2502.00094},
|
620 |
+
url={https://arxiv.org/abs/2502.00094},
|
621 |
+
```
|
622 |
+
---
|
added_tokens.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|box_end|>": 151649,
|
3 |
+
"<|box_start|>": 151648,
|
4 |
+
"<|endoftext|>": 151643,
|
5 |
+
"<|im_end|>": 151645,
|
6 |
+
"<|im_start|>": 151644,
|
7 |
+
"<|image_pad|>": 151655,
|
8 |
+
"<|object_ref_end|>": 151647,
|
9 |
+
"<|object_ref_start|>": 151646,
|
10 |
+
"<|quad_end|>": 151651,
|
11 |
+
"<|quad_start|>": 151650,
|
12 |
+
"<|video_pad|>": 151656,
|
13 |
+
"<|vision_end|>": 151653,
|
14 |
+
"<|vision_pad|>": 151654,
|
15 |
+
"<|vision_start|>": 151652
|
16 |
+
}
|
assets_hf/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
assets_hf/AIN.png
ADDED
![]() |
Git LFS Details
|
assets_hf/Eval_CAMEL.png
ADDED
![]() |
Git LFS Details
|
assets_hf/ain_can_see.png
ADDED
![]() |
Git LFS Details
|
assets_hf/demo_image.jpeg
ADDED
![]() |
Git LFS Details
|
assets_hf/intro_bar.png
ADDED
![]() |
assets_hf/qualitative.png
ADDED
![]() |
Git LFS Details
|
assets_hf/radar_chart.png
ADDED
![]() |
Git LFS Details
|
assets_hf/toxicity.png
ADDED
![]() |
Git LFS Details
|
assets_hf/verify_pipeline.png
ADDED
![]() |
Git LFS Details
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen2-VL-7B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2VLForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"image_token_id": 151655,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 18944,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen2_vl",
|
17 |
+
"num_attention_heads": 28,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 4,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": {
|
22 |
+
"mrope_section": [
|
23 |
+
16,
|
24 |
+
24,
|
25 |
+
24
|
26 |
+
],
|
27 |
+
"rope_type": "default",
|
28 |
+
"type": "default"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": 32768,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.46.1",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"video_token_id": 151656,
|
38 |
+
"vision_config": {
|
39 |
+
"in_chans": 3,
|
40 |
+
"model_type": "qwen2_vl",
|
41 |
+
"spatial_patch_size": 14
|
42 |
+
},
|
43 |
+
"vision_end_token_id": 151653,
|
44 |
+
"vision_start_token_id": 151652,
|
45 |
+
"vision_token_id": 151654,
|
46 |
+
"vocab_size": 152064
|
47 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.01,
|
10 |
+
"top_k": 1,
|
11 |
+
"top_p": 0.001,
|
12 |
+
"transformers_version": "4.46.1"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:521a7f855fe7007de55d5ee50db1454b0f25e5e4c0315045337c9fefe39e0816
|
3 |
+
size 4949146168
|
model-00002-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:038ebf8d995aa6ceb842f1980340b96ec1ecbda1ad3f23a7ffb1ae164f57dd73
|
3 |
+
size 4984124272
|
model-00003-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce491efce017d261faef2c0f80aa247bbc19a9ee3f1c235f08fc770604cdc474
|
3 |
+
size 4932743936
|
model-00004-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b6f52b6deda6d0d3bada4f5b3dbf5dab045ce67a82d9e72e018ac99950883cc
|
3 |
+
size 4998852296
|
model-00005-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92e24b3cf9fb877bbf1e89fe109996d72509e2ae4235d0c8ca204925f4ee1f1b
|
3 |
+
size 4984124336
|
model-00006-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3828b394021b0632e84c638e081ec3f349bde0936c87db1e9045b066eb63ccfc
|
3 |
+
size 4932743992
|
model-00007-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d0311852fc0d983b2608a62d455992db52342d6c488d48ddc4f8a8aac820fcb
|
3 |
+
size 3383846800
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 33165502464
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00007-of-00007.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00007.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00007.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00007.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00007.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00007.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00007.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00007.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00007.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00007.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00007.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00007.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00007.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00007.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00007-of-00007.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00007-of-00007.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00007-of-00007.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00007-of-00007.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00007.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00007.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00007.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00007.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00007.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00007.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
344 |
+
"model.norm.weight": "model-00007-of-00007.safetensors",
|
345 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00007.safetensors",
|
346 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00007.safetensors",
|
347 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
348 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
349 |
+
"visual.blocks.0.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
350 |
+
"visual.blocks.0.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
351 |
+
"visual.blocks.0.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
352 |
+
"visual.blocks.0.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
353 |
+
"visual.blocks.0.norm1.bias": "model-00001-of-00007.safetensors",
|
354 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00007.safetensors",
|
355 |
+
"visual.blocks.0.norm2.bias": "model-00001-of-00007.safetensors",
|
356 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00007.safetensors",
|
357 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00007.safetensors",
|
358 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00007.safetensors",
|
359 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
360 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
361 |
+
"visual.blocks.1.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
362 |
+
"visual.blocks.1.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
363 |
+
"visual.blocks.1.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
364 |
+
"visual.blocks.1.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
365 |
+
"visual.blocks.1.norm1.bias": "model-00001-of-00007.safetensors",
|
366 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00007.safetensors",
|
367 |
+
"visual.blocks.1.norm2.bias": "model-00001-of-00007.safetensors",
|
368 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00007.safetensors",
|
369 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00007.safetensors",
|
370 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00007.safetensors",
|
371 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
372 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
373 |
+
"visual.blocks.10.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
374 |
+
"visual.blocks.10.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
375 |
+
"visual.blocks.10.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
376 |
+
"visual.blocks.10.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
377 |
+
"visual.blocks.10.norm1.bias": "model-00001-of-00007.safetensors",
|
378 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00007.safetensors",
|
379 |
+
"visual.blocks.10.norm2.bias": "model-00001-of-00007.safetensors",
|
380 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00007.safetensors",
|
381 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00007.safetensors",
|
382 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00007.safetensors",
|
383 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
384 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
385 |
+
"visual.blocks.11.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
386 |
+
"visual.blocks.11.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
387 |
+
"visual.blocks.11.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
388 |
+
"visual.blocks.11.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
389 |
+
"visual.blocks.11.norm1.bias": "model-00001-of-00007.safetensors",
|
390 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00007.safetensors",
|
391 |
+
"visual.blocks.11.norm2.bias": "model-00001-of-00007.safetensors",
|
392 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00007.safetensors",
|
393 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00007.safetensors",
|
394 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00007.safetensors",
|
395 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
396 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
397 |
+
"visual.blocks.12.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
398 |
+
"visual.blocks.12.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
399 |
+
"visual.blocks.12.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
400 |
+
"visual.blocks.12.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
401 |
+
"visual.blocks.12.norm1.bias": "model-00001-of-00007.safetensors",
|
402 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00007.safetensors",
|
403 |
+
"visual.blocks.12.norm2.bias": "model-00001-of-00007.safetensors",
|
404 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00007.safetensors",
|
405 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00007.safetensors",
|
406 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00007.safetensors",
|
407 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
408 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
409 |
+
"visual.blocks.13.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
410 |
+
"visual.blocks.13.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
411 |
+
"visual.blocks.13.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
412 |
+
"visual.blocks.13.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
413 |
+
"visual.blocks.13.norm1.bias": "model-00001-of-00007.safetensors",
|
414 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00007.safetensors",
|
415 |
+
"visual.blocks.13.norm2.bias": "model-00001-of-00007.safetensors",
|
416 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00007.safetensors",
|
417 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00007.safetensors",
|
418 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00007.safetensors",
|
419 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
420 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
421 |
+
"visual.blocks.14.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
422 |
+
"visual.blocks.14.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
423 |
+
"visual.blocks.14.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
424 |
+
"visual.blocks.14.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
425 |
+
"visual.blocks.14.norm1.bias": "model-00001-of-00007.safetensors",
|
426 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00007.safetensors",
|
427 |
+
"visual.blocks.14.norm2.bias": "model-00001-of-00007.safetensors",
|
428 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00007.safetensors",
|
429 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00007.safetensors",
|
430 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00007.safetensors",
|
431 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
432 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
433 |
+
"visual.blocks.15.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
434 |
+
"visual.blocks.15.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
435 |
+
"visual.blocks.15.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
436 |
+
"visual.blocks.15.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
437 |
+
"visual.blocks.15.norm1.bias": "model-00001-of-00007.safetensors",
|
438 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00007.safetensors",
|
439 |
+
"visual.blocks.15.norm2.bias": "model-00001-of-00007.safetensors",
|
440 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00007.safetensors",
|
441 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00007.safetensors",
|
442 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00007.safetensors",
|
443 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
444 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
445 |
+
"visual.blocks.16.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
446 |
+
"visual.blocks.16.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
447 |
+
"visual.blocks.16.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
448 |
+
"visual.blocks.16.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
449 |
+
"visual.blocks.16.norm1.bias": "model-00001-of-00007.safetensors",
|
450 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00007.safetensors",
|
451 |
+
"visual.blocks.16.norm2.bias": "model-00001-of-00007.safetensors",
|
452 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00007.safetensors",
|
453 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00007.safetensors",
|
454 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00007.safetensors",
|
455 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
456 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
457 |
+
"visual.blocks.17.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
458 |
+
"visual.blocks.17.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
459 |
+
"visual.blocks.17.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
460 |
+
"visual.blocks.17.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
461 |
+
"visual.blocks.17.norm1.bias": "model-00001-of-00007.safetensors",
|
462 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00007.safetensors",
|
463 |
+
"visual.blocks.17.norm2.bias": "model-00001-of-00007.safetensors",
|
464 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00007.safetensors",
|
465 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00007.safetensors",
|
466 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00007.safetensors",
|
467 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
468 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
469 |
+
"visual.blocks.18.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
470 |
+
"visual.blocks.18.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
471 |
+
"visual.blocks.18.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
472 |
+
"visual.blocks.18.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
473 |
+
"visual.blocks.18.norm1.bias": "model-00001-of-00007.safetensors",
|
474 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00007.safetensors",
|
475 |
+
"visual.blocks.18.norm2.bias": "model-00001-of-00007.safetensors",
|
476 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00007.safetensors",
|
477 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00007.safetensors",
|
478 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00007.safetensors",
|
479 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
480 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
481 |
+
"visual.blocks.19.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
482 |
+
"visual.blocks.19.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
483 |
+
"visual.blocks.19.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
484 |
+
"visual.blocks.19.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
485 |
+
"visual.blocks.19.norm1.bias": "model-00001-of-00007.safetensors",
|
486 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00007.safetensors",
|
487 |
+
"visual.blocks.19.norm2.bias": "model-00001-of-00007.safetensors",
|
488 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00007.safetensors",
|
489 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00007.safetensors",
|
490 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00007.safetensors",
|
491 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
492 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
493 |
+
"visual.blocks.2.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
494 |
+
"visual.blocks.2.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
495 |
+
"visual.blocks.2.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
496 |
+
"visual.blocks.2.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
497 |
+
"visual.blocks.2.norm1.bias": "model-00001-of-00007.safetensors",
|
498 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00007.safetensors",
|
499 |
+
"visual.blocks.2.norm2.bias": "model-00001-of-00007.safetensors",
|
500 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00007.safetensors",
|
501 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00007.safetensors",
|
502 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00007.safetensors",
|
503 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
504 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
505 |
+
"visual.blocks.20.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
506 |
+
"visual.blocks.20.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
507 |
+
"visual.blocks.20.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
508 |
+
"visual.blocks.20.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
509 |
+
"visual.blocks.20.norm1.bias": "model-00001-of-00007.safetensors",
|
510 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00007.safetensors",
|
511 |
+
"visual.blocks.20.norm2.bias": "model-00001-of-00007.safetensors",
|
512 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00007.safetensors",
|
513 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00007.safetensors",
|
514 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00007.safetensors",
|
515 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
516 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
517 |
+
"visual.blocks.21.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
518 |
+
"visual.blocks.21.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
519 |
+
"visual.blocks.21.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
520 |
+
"visual.blocks.21.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
521 |
+
"visual.blocks.21.norm1.bias": "model-00001-of-00007.safetensors",
|
522 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00007.safetensors",
|
523 |
+
"visual.blocks.21.norm2.bias": "model-00001-of-00007.safetensors",
|
524 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00007.safetensors",
|
525 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00007.safetensors",
|
526 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00007.safetensors",
|
527 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
528 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
529 |
+
"visual.blocks.22.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
530 |
+
"visual.blocks.22.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
531 |
+
"visual.blocks.22.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
532 |
+
"visual.blocks.22.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
533 |
+
"visual.blocks.22.norm1.bias": "model-00001-of-00007.safetensors",
|
534 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00007.safetensors",
|
535 |
+
"visual.blocks.22.norm2.bias": "model-00001-of-00007.safetensors",
|
536 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00007.safetensors",
|
537 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00007.safetensors",
|
538 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00007.safetensors",
|
539 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
540 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
541 |
+
"visual.blocks.23.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
542 |
+
"visual.blocks.23.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
543 |
+
"visual.blocks.23.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
544 |
+
"visual.blocks.23.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
545 |
+
"visual.blocks.23.norm1.bias": "model-00001-of-00007.safetensors",
|
546 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00007.safetensors",
|
547 |
+
"visual.blocks.23.norm2.bias": "model-00001-of-00007.safetensors",
|
548 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00007.safetensors",
|
549 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00007.safetensors",
|
550 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00007.safetensors",
|
551 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
552 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
553 |
+
"visual.blocks.24.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
554 |
+
"visual.blocks.24.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
555 |
+
"visual.blocks.24.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
556 |
+
"visual.blocks.24.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
557 |
+
"visual.blocks.24.norm1.bias": "model-00001-of-00007.safetensors",
|
558 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00007.safetensors",
|
559 |
+
"visual.blocks.24.norm2.bias": "model-00001-of-00007.safetensors",
|
560 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00007.safetensors",
|
561 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00007.safetensors",
|
562 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00007.safetensors",
|
563 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
564 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
565 |
+
"visual.blocks.25.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
566 |
+
"visual.blocks.25.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
567 |
+
"visual.blocks.25.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
568 |
+
"visual.blocks.25.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
569 |
+
"visual.blocks.25.norm1.bias": "model-00001-of-00007.safetensors",
|
570 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00007.safetensors",
|
571 |
+
"visual.blocks.25.norm2.bias": "model-00001-of-00007.safetensors",
|
572 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00007.safetensors",
|
573 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00007.safetensors",
|
574 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00007.safetensors",
|
575 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
576 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
577 |
+
"visual.blocks.26.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
578 |
+
"visual.blocks.26.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
579 |
+
"visual.blocks.26.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
580 |
+
"visual.blocks.26.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
581 |
+
"visual.blocks.26.norm1.bias": "model-00001-of-00007.safetensors",
|
582 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00007.safetensors",
|
583 |
+
"visual.blocks.26.norm2.bias": "model-00001-of-00007.safetensors",
|
584 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00007.safetensors",
|
585 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00007.safetensors",
|
586 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00007.safetensors",
|
587 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
588 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
589 |
+
"visual.blocks.27.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
590 |
+
"visual.blocks.27.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
591 |
+
"visual.blocks.27.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
592 |
+
"visual.blocks.27.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
593 |
+
"visual.blocks.27.norm1.bias": "model-00001-of-00007.safetensors",
|
594 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00007.safetensors",
|
595 |
+
"visual.blocks.27.norm2.bias": "model-00001-of-00007.safetensors",
|
596 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00007.safetensors",
|
597 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00007.safetensors",
|
598 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00007.safetensors",
|
599 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
600 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
601 |
+
"visual.blocks.28.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
602 |
+
"visual.blocks.28.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
603 |
+
"visual.blocks.28.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
604 |
+
"visual.blocks.28.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
605 |
+
"visual.blocks.28.norm1.bias": "model-00001-of-00007.safetensors",
|
606 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00007.safetensors",
|
607 |
+
"visual.blocks.28.norm2.bias": "model-00001-of-00007.safetensors",
|
608 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00007.safetensors",
|
609 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00007.safetensors",
|
610 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00007.safetensors",
|
611 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
612 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
613 |
+
"visual.blocks.29.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
614 |
+
"visual.blocks.29.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
615 |
+
"visual.blocks.29.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
616 |
+
"visual.blocks.29.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
617 |
+
"visual.blocks.29.norm1.bias": "model-00001-of-00007.safetensors",
|
618 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00007.safetensors",
|
619 |
+
"visual.blocks.29.norm2.bias": "model-00001-of-00007.safetensors",
|
620 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00007.safetensors",
|
621 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00007.safetensors",
|
622 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00007.safetensors",
|
623 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
624 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
625 |
+
"visual.blocks.3.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
626 |
+
"visual.blocks.3.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
627 |
+
"visual.blocks.3.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
628 |
+
"visual.blocks.3.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
629 |
+
"visual.blocks.3.norm1.bias": "model-00001-of-00007.safetensors",
|
630 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00007.safetensors",
|
631 |
+
"visual.blocks.3.norm2.bias": "model-00001-of-00007.safetensors",
|
632 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00007.safetensors",
|
633 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00007.safetensors",
|
634 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00007.safetensors",
|
635 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
636 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
637 |
+
"visual.blocks.30.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
638 |
+
"visual.blocks.30.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
639 |
+
"visual.blocks.30.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
640 |
+
"visual.blocks.30.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
641 |
+
"visual.blocks.30.norm1.bias": "model-00001-of-00007.safetensors",
|
642 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00007.safetensors",
|
643 |
+
"visual.blocks.30.norm2.bias": "model-00001-of-00007.safetensors",
|
644 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00007.safetensors",
|
645 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00007.safetensors",
|
646 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00007.safetensors",
|
647 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
648 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
649 |
+
"visual.blocks.31.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
650 |
+
"visual.blocks.31.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
651 |
+
"visual.blocks.31.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
652 |
+
"visual.blocks.31.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
653 |
+
"visual.blocks.31.norm1.bias": "model-00001-of-00007.safetensors",
|
654 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00007.safetensors",
|
655 |
+
"visual.blocks.31.norm2.bias": "model-00001-of-00007.safetensors",
|
656 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00007.safetensors",
|
657 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00007.safetensors",
|
658 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00007.safetensors",
|
659 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
660 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
661 |
+
"visual.blocks.4.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
662 |
+
"visual.blocks.4.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
663 |
+
"visual.blocks.4.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
664 |
+
"visual.blocks.4.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
665 |
+
"visual.blocks.4.norm1.bias": "model-00001-of-00007.safetensors",
|
666 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00007.safetensors",
|
667 |
+
"visual.blocks.4.norm2.bias": "model-00001-of-00007.safetensors",
|
668 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00007.safetensors",
|
669 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00007.safetensors",
|
670 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00007.safetensors",
|
671 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
672 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
673 |
+
"visual.blocks.5.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
674 |
+
"visual.blocks.5.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
675 |
+
"visual.blocks.5.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
676 |
+
"visual.blocks.5.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
677 |
+
"visual.blocks.5.norm1.bias": "model-00001-of-00007.safetensors",
|
678 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00007.safetensors",
|
679 |
+
"visual.blocks.5.norm2.bias": "model-00001-of-00007.safetensors",
|
680 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00007.safetensors",
|
681 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00007.safetensors",
|
682 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00007.safetensors",
|
683 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
684 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
685 |
+
"visual.blocks.6.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
686 |
+
"visual.blocks.6.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
687 |
+
"visual.blocks.6.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
688 |
+
"visual.blocks.6.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
689 |
+
"visual.blocks.6.norm1.bias": "model-00001-of-00007.safetensors",
|
690 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00007.safetensors",
|
691 |
+
"visual.blocks.6.norm2.bias": "model-00001-of-00007.safetensors",
|
692 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00007.safetensors",
|
693 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00007.safetensors",
|
694 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00007.safetensors",
|
695 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
696 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
697 |
+
"visual.blocks.7.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
698 |
+
"visual.blocks.7.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
699 |
+
"visual.blocks.7.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
700 |
+
"visual.blocks.7.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
701 |
+
"visual.blocks.7.norm1.bias": "model-00001-of-00007.safetensors",
|
702 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00007.safetensors",
|
703 |
+
"visual.blocks.7.norm2.bias": "model-00001-of-00007.safetensors",
|
704 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00007.safetensors",
|
705 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00007.safetensors",
|
706 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00007.safetensors",
|
707 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
708 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
709 |
+
"visual.blocks.8.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
710 |
+
"visual.blocks.8.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
711 |
+
"visual.blocks.8.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
712 |
+
"visual.blocks.8.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
713 |
+
"visual.blocks.8.norm1.bias": "model-00001-of-00007.safetensors",
|
714 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00007.safetensors",
|
715 |
+
"visual.blocks.8.norm2.bias": "model-00001-of-00007.safetensors",
|
716 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00007.safetensors",
|
717 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00007.safetensors",
|
718 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00007.safetensors",
|
719 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00007.safetensors",
|
720 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00007.safetensors",
|
721 |
+
"visual.blocks.9.mlp.fc1.bias": "model-00001-of-00007.safetensors",
|
722 |
+
"visual.blocks.9.mlp.fc1.weight": "model-00001-of-00007.safetensors",
|
723 |
+
"visual.blocks.9.mlp.fc2.bias": "model-00001-of-00007.safetensors",
|
724 |
+
"visual.blocks.9.mlp.fc2.weight": "model-00001-of-00007.safetensors",
|
725 |
+
"visual.blocks.9.norm1.bias": "model-00001-of-00007.safetensors",
|
726 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00007.safetensors",
|
727 |
+
"visual.blocks.9.norm2.bias": "model-00001-of-00007.safetensors",
|
728 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00007.safetensors",
|
729 |
+
"visual.merger.ln_q.bias": "model-00001-of-00007.safetensors",
|
730 |
+
"visual.merger.ln_q.weight": "model-00001-of-00007.safetensors",
|
731 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00007.safetensors",
|
732 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00007.safetensors",
|
733 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00007.safetensors",
|
734 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00007.safetensors",
|
735 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00007.safetensors"
|
736 |
+
}
|
737 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.48145466,
|
8 |
+
0.4578275,
|
9 |
+
0.40821073
|
10 |
+
],
|
11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.26862954,
|
14 |
+
0.26130258,
|
15 |
+
0.27577711
|
16 |
+
],
|
17 |
+
"max_pixels": 12845056,
|
18 |
+
"merge_size": 2,
|
19 |
+
"min_pixels": 3136,
|
20 |
+
"patch_size": 14,
|
21 |
+
"processor_class": "Qwen2VLProcessor",
|
22 |
+
"resample": 3,
|
23 |
+
"rescale_factor": 0.00392156862745098,
|
24 |
+
"size": {
|
25 |
+
"max_pixels": 12845056,
|
26 |
+
"min_pixels": 3136
|
27 |
+
},
|
28 |
+
"temporal_patch_size": 2
|
29 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091aa7594dc2fcfbfa06b9e3c22a5f0562ac14f30375c13af7309407a0e67b8a
|
3 |
+
size 11420371
|
tokenizer_config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<|object_ref_start|>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"151647": {
|
37 |
+
"content": "<|object_ref_end|>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"151648": {
|
45 |
+
"content": "<|box_start|>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"151649": {
|
53 |
+
"content": "<|box_end|>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"151650": {
|
61 |
+
"content": "<|quad_start|>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"151651": {
|
69 |
+
"content": "<|quad_end|>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"151652": {
|
77 |
+
"content": "<|vision_start|>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"151653": {
|
85 |
+
"content": "<|vision_end|>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"151654": {
|
93 |
+
"content": "<|vision_pad|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"151655": {
|
101 |
+
"content": "<|image_pad|>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"151656": {
|
109 |
+
"content": "<|video_pad|>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
}
|
116 |
+
},
|
117 |
+
"additional_special_tokens": [
|
118 |
+
"<|im_start|>",
|
119 |
+
"<|im_end|>",
|
120 |
+
"<|object_ref_start|>",
|
121 |
+
"<|object_ref_end|>",
|
122 |
+
"<|box_start|>",
|
123 |
+
"<|box_end|>",
|
124 |
+
"<|quad_start|>",
|
125 |
+
"<|quad_end|>",
|
126 |
+
"<|vision_start|>",
|
127 |
+
"<|vision_end|>",
|
128 |
+
"<|vision_pad|>",
|
129 |
+
"<|image_pad|>",
|
130 |
+
"<|video_pad|>"
|
131 |
+
],
|
132 |
+
"bos_token": null,
|
133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
134 |
+
"clean_up_tokenization_spaces": false,
|
135 |
+
"eos_token": "<|im_end|>",
|
136 |
+
"errors": "replace",
|
137 |
+
"model_max_length": 32768,
|
138 |
+
"pad_token": "<|endoftext|>",
|
139 |
+
"padding_side": "right",
|
140 |
+
"processor_class": "Qwen2VLProcessor",
|
141 |
+
"split_special_tokens": false,
|
142 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
143 |
+
"unk_token": null
|
144 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|