File size: 16,558 Bytes
cb9e677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import tempfile
from pathlib import Path
from typing import Dict

import pytest
import torch

from finetune.args import LoraArgs
from finetune.checkpointing import Checkpointer
from finetune.loss import compute_loss_with_mask
from finetune.mixed_precision import (
    downcast_mixed_precision,
    prepare_mixed_precision,
    upcast_mixed_precision,
)
from finetune.utils import TrainState
from finetune.wrapped_model import load_model
from model.transformer import (
    LoRALinear,
)
from tests.test_utils import (
    MODEL_PATH,
    get_dataloader,
    is_float_equal,
    setup_mp_test_dist,
)

from .test_utils import spawn_for_all_world_sizes

torch.backends.cudnn.deterministic = True  # use deterministic algorithms
torch.backends.cudnn.benchmark = False  # disable cuDNN benchmark


@pytest.mark.parametrize(
    ("world_size", "enable_lora", "dtype"),
    [
        (1, False, torch.float32),
        (1, True, torch.float32),
        (2, False, torch.float32),
        (2, True, torch.float32),
        (1, False, torch.bfloat16),
        (1, True, torch.bfloat16),
        (2, False, torch.bfloat16),
        (2, True, torch.bfloat16),
    ],
)
def test_weights_loading(world_size, enable_lora, dtype):
    spawn_for_all_world_sizes(
        _check_weights_loading,
        world_sizes=[world_size],
        args=[enable_lora, dtype],
        deterministic=True,
    )


def _check_weights_loading(
    rank: int,
    world_size: int,
    filename: str,
    filename_rpc: str,
    enable_lora: bool,
    dtype: torch.dtype,
):
    model_parallel = 1
    setup_mp_test_dist(rank, world_size, filename, model_parallel, seed=0)

    folder = Path(MODEL_PATH)
    model = load_model(
        folder=folder,
        lora=LoraArgs(enable=enable_lora),
        checkpoint=True,
        param_dtype=dtype,
    )

    # add hook so that LoRA weights are automatically merged:
    def register_merge_lora_hook(m: torch.nn.Module):
        def merge_lora(
            m: torch.nn.Module, destination: Dict[str, torch.Tensor], prefix: str, *args
        ):
            weight = m.merge_weight()
            destination[prefix + "weight"] = weight

        if isinstance(m, LoRALinear):
            m._merge_lora_handle = m._register_state_dict_hook(merge_lora)

    model.apply(register_merge_lora_hook)

    if world_size > 1:
        with model.summon_full_params(model, writeback=True):
            states = {
                k: v
                for k, v in model.state_dict().items()
                if "lora" not in k and "frozen" not in k
            }
    else:
        states = {
            k: v
            for k, v in model.state_dict().items()
            if "lora" not in k and "frozen" not in k
        }

    EXP_PARAM_SUM = 308.9932 if dtype == torch.float32 else 308.0
    params = sum([v.sum() for v in states.values()]).item()

    # LoRA is equal to no LoRA as LoRA weights should be init to 0
    assert is_float_equal(params, EXP_PARAM_SUM), params

    if enable_lora:
        lora_B_params = [
            v.float().abs().sum() for k, v in model.named_parameters() if "lora_B" in k
        ]

        assert len(lora_B_params) > 0
        assert sum(lora_B_params) == 0, "Lora_B should always be zero init"

        lora_A_params = [
            v.float().abs().sum() for k, v in model.named_parameters() if "lora_A" in k
        ]

        assert len(lora_A_params) > 0
        assert sum(lora_A_params) > 0, "Lora_A should init to non-zero values"


@pytest.mark.parametrize(
    ("world_size", "enable_lora"), [(1, False), (1, True), (2, False), (2, True)]
)
def test_fsdp_logits_and_loss(world_size, enable_lora):
    spawn_for_all_world_sizes(
        _check_fsdp_logits_and_loss,
        world_sizes=[world_size],
        args=[enable_lora],
        deterministic=True,
    )


def _check_fsdp_logits_and_loss(
    rank: int, world_size: int, filename: str, filename_rpc: str, enable_lora: bool
):
    model_parallel = 1
    setup_mp_test_dist(rank, world_size, filename, model_parallel, seed=0)
    seq_len = 100

    folder = Path(MODEL_PATH)
    model = load_model(
        folder=folder,
        lora=LoraArgs(enable=enable_lora),
        checkpoint=True,
        param_dtype=torch.bfloat16,
    )
    # By seting equal rank and world_size we can assure that both ranks see the same data and hence the average
    data_loader = get_dataloader(seq_len=seq_len, rank=0, world_size=2)

    batch = next(data_loader)

    x = torch.from_numpy(batch.x).cuda(non_blocking=True)
    y = torch.from_numpy(batch.y).cuda(non_blocking=True)
    y_mask = torch.from_numpy(batch.y_mask).cuda(non_blocking=True)

    # forward / backward
    output = model(
        input_ids=x,
        seqlens=batch.sizes,
    )

    # check logits
    # logits should be the same for LoRA and non-LoRA
    assert output.shape == (seq_len, model.args.vocab_size)
    output_sum = output.abs().float().sum().item()

    EXP_OUTPUT_WORLD_1 = 162617.625

    assert is_float_equal(output_sum, EXP_OUTPUT_WORLD_1, precision=1e1), output_sum

    # check loss is the same for all
    # loss should be the same for LoRA and non-LoRA
    mb_loss = compute_loss_with_mask(output, y, y_mask)

    EXPECTED_LOSS = 10.408413887023926

    assert is_float_equal(mb_loss.item(), EXPECTED_LOSS), mb_loss.item()


@pytest.mark.parametrize(
    ("world_size", "dtype"),
    [(1, torch.bfloat16), (2, torch.bfloat16), (1, torch.float32), (2, torch.float32)],
)
def test_fsdp_grads_non_lora(world_size, dtype):
    spawn_for_all_world_sizes(
        _check_fsdp_grads_non_lora,
        world_sizes=[world_size],
        deterministic=True,
        args=[dtype],
    )


def _check_fsdp_grads_non_lora(
    rank: int, world_size: int, filename: str, filename_rpc: str, dtype: torch.dtype
):
    model_parallel = 1
    setup_mp_test_dist(rank, world_size, filename, model_parallel, seed=0)
    seq_len = 2048

    folder = Path(MODEL_PATH)
    model = load_model(
        folder=folder,
        lora=LoraArgs(enable=False),
        checkpoint=True,
        param_dtype=dtype,
    )
    # same world_size to check for equality
    data_loader = get_dataloader(seq_len=seq_len, rank=0, world_size=2)

    batch = next(data_loader)

    x = torch.from_numpy(batch.x).cuda(non_blocking=True)
    y = torch.from_numpy(batch.y).cuda(non_blocking=True)
    y_mask = torch.from_numpy(batch.y_mask).cuda(non_blocking=True)

    # forward / backward
    output = model(
        input_ids=x,
        seqlens=batch.sizes,
    )

    mb_loss = compute_loss_with_mask(output, y, y_mask)
    mb_loss.backward()

    num_grad_params = sum([p.grad.numel() for p in model.parameters()])

    assert (4301120 // world_size) == num_grad_params, num_grad_params

    torch.distributed.barrier()

    sharded_flat_grads = sum(
        [p.grad.float().abs().sum().item() for p in model.parameters()]
    )

    print(f"{rank}: {world_size}: {dtype} = {sharded_flat_grads}")

    EXP_GRAD_WORLD_2_RANK_0 = 95.45827150344849
    EXP_GRAD_WORLD_2_RANK_1 = 86.09188461303711
    EXP_GRAD_WORLD_1 = EXP_GRAD_WORLD_2_RANK_0 + EXP_GRAD_WORLD_2_RANK_1

    if world_size == 1:
        assert is_float_equal(
            sharded_flat_grads, EXP_GRAD_WORLD_1, 2.0e-1
        ), sharded_flat_grads
    elif world_size == 2 and rank == 0:
        assert is_float_equal(
            sharded_flat_grads, EXP_GRAD_WORLD_2_RANK_0, 2.0e-1
        ), sharded_flat_grads
    elif world_size == 2 and rank == 1:
        assert is_float_equal(
            sharded_flat_grads, EXP_GRAD_WORLD_2_RANK_1, 2.0e-1
        ), sharded_flat_grads


@pytest.mark.parametrize(
    ("world_size", "dtype"),
    [(1, torch.bfloat16), (2, torch.bfloat16), (1, torch.float32), (2, torch.float32)],
)
def test_fsdp_grads_lora(world_size, dtype):
    spawn_for_all_world_sizes(
        _check_fsdp_grads_lora,
        world_sizes=[world_size],
        deterministic=True,
        args=[dtype],
    )


def _check_fsdp_grads_lora(
    rank: int, world_size: int, filename: str, filename_rpc: str, dtype: torch.dtype
):
    model_parallel = 1
    setup_mp_test_dist(rank, world_size, filename, model_parallel, seed=0)
    seq_len = 2048

    folder = Path(MODEL_PATH)
    model = load_model(
        folder=folder,
        lora=LoraArgs(enable=True),
        checkpoint=True,
        param_dtype=dtype,
    )
    # same world_size to check for equality
    data_loader = get_dataloader(seq_len=seq_len, rank=0, world_size=2)

    batch = next(data_loader)

    x = torch.from_numpy(batch.x).cuda(non_blocking=True)
    y = torch.from_numpy(batch.y).cuda(non_blocking=True)
    y_mask = torch.from_numpy(batch.y_mask).cuda(non_blocking=True)

    # forward / backward
    output = model(
        input_ids=x,
        seqlens=batch.sizes,
    )

    mb_loss = compute_loss_with_mask(output, y, y_mask)
    mb_loss.backward()

    num_grad_params = sum(
        [p.grad.numel() for p in model.parameters() if p.grad is not None]
    )

    assert (40960 // world_size) == num_grad_params, num_grad_params

    torch.distributed.barrier()

    sharded_flat_grads = sum(
        [
            p.grad.float().abs().sum().item()
            for p in model.parameters()
            if p.grad is not None
        ]
    )

    print(f"{rank}: {world_size}: {dtype} = {sharded_flat_grads}")

    EXP_GRAD_WORLD_2_RANK_0 = 3.0742580661177635
    EXP_GRAD_WORLD_2_RANK_1 = 3.074301045779139
    EXP_GRAD_WORLD_1 = EXP_GRAD_WORLD_2_RANK_0 + EXP_GRAD_WORLD_2_RANK_1

    if world_size == 1:
        assert is_float_equal(
            sharded_flat_grads, EXP_GRAD_WORLD_1, 2.0e-1
        ), sharded_flat_grads
    elif world_size == 2 and rank == 0:
        assert is_float_equal(
            sharded_flat_grads, EXP_GRAD_WORLD_2_RANK_0, 2.0e-1
        ), sharded_flat_grads
    elif world_size == 2 and rank == 1:
        assert is_float_equal(
            sharded_flat_grads, EXP_GRAD_WORLD_2_RANK_1, 2.0e-1
        ), sharded_flat_grads


@pytest.mark.parametrize(
    ("world_size", "dtype"),
    [(1, torch.bfloat16), (2, torch.bfloat16), (1, torch.float32), (2, torch.float32)],
)
def test_grad_update_lora(world_size, dtype):
    spawn_for_all_world_sizes(
        _check_grad_update_lora,
        world_sizes=[world_size],
        args=[dtype],
        deterministic=True,
    )


def _check_grad_update_lora(
    rank: int, world_size: int, filename: str, filename_rpc: str, dtype: torch.dtype
):
    model_parallel = 1
    setup_mp_test_dist(rank, world_size, filename, model_parallel, seed=0)
    seq_len = 1000

    folder = Path(MODEL_PATH)
    model = load_model(
        folder=folder,
        lora=LoraArgs(enable=True),
        checkpoint=True,
        param_dtype=dtype,
    )
    optimizer = torch.optim.AdamW(model.parameters())

    data_loader = get_dataloader(seq_len=seq_len)

    batch = next(data_loader)

    x = torch.from_numpy(batch.x).cuda(non_blocking=True)
    y = torch.from_numpy(batch.y).cuda(non_blocking=True)
    y_mask = (
        torch.from_numpy(batch.y_mask).cuda(non_blocking=True)
        if batch.y_mask is not None
        else None
    )

    # forward / backward
    output = model(
        input_ids=x,
        seqlens=batch.sizes,
    )

    mb_loss = compute_loss_with_mask(output, y, y_mask)
    mb_loss.backward()

    lora_weight_sum = 0
    non_lora_weight_sum = 0
    for name, param in model.named_parameters():
        if "lora" in name or "norm" in name:
            assert param.grad is not None, name
            lora_weight_sum += param.data.float().abs().sum()
        else:
            assert param.grad is None, name
            non_lora_weight_sum += param.data.float().abs().sum()

    # update weights
    optimizer.step()

    new_lora_weight_sum = 0
    new_non_lora_weight_sum = 0
    for name, param in model.named_parameters():
        if "lora" in name or "norm" in name:
            assert param.grad is not None, name
            new_lora_weight_sum += param.data.float().abs().sum()
        else:
            assert param.grad is None, name
            new_non_lora_weight_sum += param.data.float().abs().sum()

    # make sure that LoRA weights changed, but non-LoRA weights stayed the same
    assert not is_float_equal(
        new_lora_weight_sum, lora_weight_sum, 1e-4
    ), f"New: {new_lora_weight_sum}, Old: {lora_weight_sum}"
    assert is_float_equal(
        new_non_lora_weight_sum, non_lora_weight_sum, 1e-4
    ), f"New: {new_non_lora_weight_sum}, Old: {non_lora_weight_sum}"


@pytest.mark.parametrize(
    ("enable_lora", "param_dtype"),
    [
        (False, torch.float32),
        (True, torch.float32),
        (False, torch.bfloat16),
        (True, torch.bfloat16),
    ],
)
def test_grads_fsdp_mp(enable_lora, param_dtype):
    with tempfile.TemporaryDirectory() as tmpdirname:
        for world_size in [1, 2]:
            spawn_for_all_world_sizes(
                _check_grads_fsdp_mp,
                world_sizes=[world_size],
                deterministic=True,
                args=[tmpdirname, enable_lora, param_dtype],
            )

        w1_sd = torch.load(Path(tmpdirname) / Path("params_w1.pt"), map_location="cpu")
        w2_sd = torch.load(Path(tmpdirname) / Path("params_w2.pt"), map_location="cpu")

        for k in w1_sd.keys():
            assert w1_sd[k].shape == w2_sd[k].shape, k
            atol = 10 if param_dtype == torch.float32 else 100
            assert (w1_sd[k] - w2_sd[k]).sum().abs().item() < atol


def _check_grads_fsdp_mp(
    rank: int,
    world_size: int,
    filename: str,
    filename_rpc: str,
    tmpdirname: str,
    enable_lora: bool,
    param_dtype: torch.dtype,
):
    model_parallel = 1
    setup_mp_test_dist(rank, world_size, filename, model_parallel, seed=0)
    seq_len = 4096

    optim_dtype = torch.float32

    folder = Path(MODEL_PATH)
    model = load_model(
        folder=folder,
        lora=LoraArgs(enable=enable_lora),
        checkpoint=True,
        param_dtype=param_dtype,
    )

    # high learning rate to show differences
    optimizer = torch.optim.AdamW(model.parameters(), lr=0.1)

    # mock a train state that has done three steps
    steps = 4
    state = TrainState(max_steps=steps)

    # mock run_dir as we won't save anything in this test
    run_dir = Path(tmpdirname)

    checkpointer = Checkpointer(model, state, run_dir=run_dir, num_ckpt_keep=None)

    # make sure the same data is seen
    dataloaders = [
        get_dataloader(seq_len=seq_len, rank=rank + i, world_size=2)
        for i in range(2 - world_size + 1)
    ]

    prepare_mixed_precision(
        model.parameters(), param_dtype=param_dtype, optim_dtype=optim_dtype
    )

    for _ in range(steps):
        state.start_step()
        optimizer.zero_grad()

        for data_loader in dataloaders:
            torch.manual_seed(0)
            batch = next(data_loader)

            x = torch.from_numpy(batch.x).cuda()
            y = torch.from_numpy(batch.y).cuda()
            y_mask = (
                torch.from_numpy(batch.y_mask).cuda(non_blocking=True)
                if batch.y_mask is not None
                else None
            )

            # forward / backward
            output = model(
                input_ids=x,
                seqlens=batch.sizes,
            )

            mb_loss = compute_loss_with_mask(output, y, y_mask)
            mb_loss.backward()

            assert model.params[0].dtype == param_dtype

            print(f"rank: {rank}, world_size: {world_size}, x: {x.abs().sum()}")
            print(f"rank: {rank}, world_size: {world_size}, y: {y.abs().sum()}")
            print(f"rank: {rank}, world_size: {world_size}, x shape: {x.shape}")

            if y_mask is not None:
                print(
                    f"rank: {rank}, world_size: {world_size}, y_mask: {y_mask.abs().sum()}"
                )
            print(f"rank: {rank}, world_size: {world_size}, loss: {mb_loss}")

        for p in model.parameters():
            if p.requires_grad:
                assert p.grad is not None
                p.grad.div_(len(dataloaders))

        max_norm = 1.0
        model.clip_grad_norm_(max_norm=max_norm)

        upcast_mixed_precision(model.parameters(), optim_dtype=optim_dtype)

        optimizer.step()

        downcast_mixed_precision(model.parameters(), param_dtype=param_dtype)

    save_dict = checkpointer.retrieve_save_states(
        save_only_lora=enable_lora, save_dtype=torch.float32
    )

    path = "params_w1.pt" if world_size == 1 else "params_w2.pt"
    torch.save(save_dict, Path(tmpdirname) / Path(path))