--- license: apache-2.0 datasets: - agentlans/high-quality-english-sentences language: - en base_model: - google-t5/t5-base library_name: transformers tags: - Safetensors --- This model is for typos in texts and it outputs corrected texts. Example: Text with Typos: **Whathvhr wh call owr carhaivhrs - doctors, nwrsh practitionhrs, clinicians, - wh nhhd thhm not only to carh, wh nhhd thhm to uh aulh to providh thh riaht valwh.** Corrected Text: **Whatever we call our caregivers - doctors, nurse practitioners, clinicians, - we need them not only to care, we need them to be able to provide the right value.** Example Usage: ```py #Load the model and tokenizer text = "" #Text with typos here! inputs = tokenizer(cipher_text, return_tensors="pt", padding=True, truncation=True, max_length=256).to(device) outputs = model.generate(inputs["input_ids"], max_length=256) corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) ```