--- base_model: Snowflake/snowflake-arctic-embed-m library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:600 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: How can organizations tailor their measurement of GAI risks based on specific characteristics? sentences: - "3 \nthe abuse, misuse, and unsafe repurposing by humans (adversarial or not),\ \ and others result \nfrom interactions between a human and an AI system. \n\ • \nTime scale: GAI risks may materialize abruptly or across extended periods.\ \ Examples include \nimmediate (and/or prolonged) emotional harm and potential\ \ risks to physical safety due to the \ndistribution of harmful deepfake images,\ \ or the long-term effect of disinformation on societal \ntrust in public institutions." - "12 \nCSAM. Even when trained on “clean” data, increasingly capable GAI models\ \ can synthesize or produce \nsynthetic NCII and CSAM. Websites, mobile apps,\ \ and custom-built models that generate synthetic NCII \nhave moved from niche\ \ internet forums to mainstream, automated, and scaled online businesses. \n\ Trustworthy AI Characteristics: Fair with Harmful Bias Managed, Safe, Privacy\ \ Enhanced \n2.12. \nValue Chain and Component Integration" - "case context. \nOrganizations may choose to tailor how they measure GAI risks\ \ based on these characteristics. They may \nadditionally wish to allocate risk\ \ management resources relative to the severity and likelihood of \nnegative impacts,\ \ including where and how these risks manifest, and their direct and material\ \ impacts \nharms in the context of GAI use. Mitigations for model or system level\ \ risks may differ from mitigations \nfor use-case or ecosystem level risks." - source_sentence: What methods are suggested for measuring the reliability of content authentication techniques in the context of content provenance? sentences: - "updates. \nInformation Integrity; Data Privacy \nMG-3.2-003 \nDocument sources\ \ and types of training data and their origins, potential biases \npresent in\ \ the data related to the GAI application and its content provenance, \narchitecture,\ \ training process of the pre-trained model including information on \nhyperparameters,\ \ training duration, and any fine-tuning or retrieval-augmented \ngeneration processes\ \ applied. \nInformation Integrity; Harmful Bias \nand Homogenization; Intellectual\ \ \nProperty" - "Security \nMS-2.7-005 \nMeasure reliability of content authentication methods,\ \ such as watermarking, \ncryptographic signatures, digital fingerprints, as well\ \ as access controls, \nconformity assessment, and model integrity verification,\ \ which can help support \nthe effective implementation of content provenance techniques.\ \ Evaluate the \nrate of false positives and false negatives in content provenance,\ \ as well as true \npositives and true negatives for verification. \nInformation\ \ Integrity \nMS-2.7-006" - "GV-1.6-003 \nIn addition to general model, governance, and risk information,\ \ consider the \nfollowing items in GAI system inventory entries: Data provenance\ \ information \n(e.g., source, signatures, versioning, watermarks); Known issues\ \ reported from \ninternal bug tracking or external information sharing resources\ \ (e.g., AI incident \ndatabase, AVID, CVE, NVD, or OECD AI incident monitor);\ \ Human oversight roles \nand responsibilities; Special rights and considerations\ \ for intellectual property," - source_sentence: What are the suggested actions an organization can take to manage GAI risks? sentences: - "Information Integrity; Dangerous, \nViolent, or Hateful Content; CBRN \nInformation\ \ or Capabilities \nGV-1.3-007 Devise a plan to halt development or deployment\ \ of a GAI system that poses \nunacceptable negative risk. \nCBRN Information\ \ and Capability; \nInformation Security; Information \nIntegrity \nAI Actor Tasks:\ \ Governance and Oversight \n \nGOVERN 1.4: The risk management process and its\ \ outcomes are established through transparent policies, procedures, and other" - "match the statistical properties of real-world data without disclosing personally\ \ \nidentifiable information or contributing to homogenization. \nData Privacy;\ \ Intellectual Property; \nInformation Integrity; \nConfabulation; Harmful Bias\ \ and \nHomogenization \nAI Actor Tasks: AI Deployment, AI Impact Assessment,\ \ Governance and Oversight, Operation and Monitoring \n \nMANAGE 2.3: Procedures\ \ are followed to respond to and recover from a previously unknown risk when it\ \ is identified. \nAction ID" - "• \nSuggested Action: Steps an organization or AI actor can take to manage GAI\ \ risks. \n• \nGAI Risks: Tags linking suggested actions with relevant GAI risks.\ \ \n• \nAI Actor Tasks: Pertinent AI Actor Tasks for each subcategory. Not every\ \ AI Actor Task listed will \napply to every suggested action in the subcategory\ \ (i.e., some apply to AI development and \nothers apply to AI deployment). \n\ The tables below begin with the AI RMF subcategory, shaded in blue, followed by\ \ suggested actions." - source_sentence: How can harmful bias and homogenization be addressed in the context of human-AI configuration? sentences: - "on GAI, apply general fairness metrics (e.g., demographic parity, equalized odds,\ \ \nequal opportunity, statistical hypothesis tests), to the pipeline or business\ \ \noutcome where appropriate; Custom, context-specific metrics developed in \n\ collaboration with domain experts and affected communities; Measurements of \n\ the prevalence of denigration in generated content in deployment (e.g., sub-\n\ sampling a fraction of traffic and manually annotating denigrating content). \n\ Harmful Bias and Homogenization;" - "MP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's\ \ synthetic \ndata generation capabilities for potential misuse or vulnerabilities.\ \ \nInformation Integrity; Information \nSecurity \nMP-5.1-002 \nIdentify potential\ \ content provenance harms of GAI, such as misinformation or \ndisinformation,\ \ deepfakes, including NCII, or tampered content. Enumerate and \nrank risks based\ \ on their likelihood and potential impact, and determine how well" - "MS-1.3-002 \nEngage in internal and external evaluations, GAI red-teaming, impact\ \ \nassessments, or other structured human feedback exercises in consultation\ \ \nwith representative AI Actors with expertise and familiarity in the context\ \ of \nuse, and/or who are representative of the populations associated with the\ \ \ncontext of use. \nHuman-AI Configuration; Harmful \nBias and Homogenization;\ \ CBRN \nInformation or Capabilities \nMS-1.3-003" - source_sentence: How can structured human feedback exercises, such as GAI red-teaming, contribute to GAI risk measurement and management? sentences: - "rank risks based on their likelihood and potential impact, and determine how\ \ well \nprovenance solutions address specific risks and/or harms. \nInformation\ \ Integrity; Dangerous, \nViolent, or Hateful Content; \nObscene, Degrading, and/or\ \ \nAbusive Content \nMP-5.1-003 \nConsider disclosing use of GAI to end users\ \ in relevant contexts, while considering \nthe objective of disclosure, the context\ \ of use, the likelihood and magnitude of the" - "15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable\ \ use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information\ \ or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias\ \ \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005\ \ \nMaintain an updated hierarchy of identified and expected GAI risks connected\ \ to \ncontexts of GAI model advancement and use, potentially including specialized\ \ risk" - "AI-generated content, for example by employing techniques like chaos \nengineering\ \ and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine\ \ use cases, contexts of use, capabilities, and negative impacts where \nstructured\ \ human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for\ \ GAI risk measurement and management based on the context of \nuse. \nHarmful\ \ Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009" model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m results: - task: type: information-retrieval name: Information Retrieval dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy@1 value: 0.85 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.96 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.98 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.85 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.31999999999999995 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19599999999999995 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.85 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.96 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.98 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9342942871848772 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9124166666666668 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9124166666666668 name: Cosine Map@100 - type: dot_accuracy@1 value: 0.85 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.96 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.98 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 1.0 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.85 name: Dot Precision@1 - type: dot_precision@3 value: 0.31999999999999995 name: Dot Precision@3 - type: dot_precision@5 value: 0.19599999999999995 name: Dot Precision@5 - type: dot_precision@10 value: 0.09999999999999998 name: Dot Precision@10 - type: dot_recall@1 value: 0.85 name: Dot Recall@1 - type: dot_recall@3 value: 0.96 name: Dot Recall@3 - type: dot_recall@5 value: 0.98 name: Dot Recall@5 - type: dot_recall@10 value: 1.0 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9342942871848772 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9124166666666668 name: Dot Mrr@10 - type: dot_map@100 value: 0.9124166666666668 name: Dot Map@100 --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Cheselle/finetuned-arctic-sentence") # Run inference sentences = [ 'How can structured human feedback exercises, such as GAI red-teaming, contribute to GAI risk measurement and management?', 'AI-generated content, for example by employing techniques like chaos \nengineering and seeking stakeholder feedback. \nInformation Integrity \nMS-1.1-008 \nDefine use cases, contexts of use, capabilities, and negative impacts where \nstructured human feedback exercises, e.g., GAI red-teaming, would be most \nbeneficial for GAI risk measurement and management based on the context of \nuse. \nHarmful Bias and \nHomogenization; CBRN \nInformation or Capabilities \nMS-1.1-009', '15 \nGV-1.3-004 Obtain input from stakeholder communities to identify unacceptable use, in \naccordance with activities in the AI RMF Map function. \nCBRN Information or Capabilities; \nObscene, Degrading, and/or \nAbusive Content; Harmful Bias \nand Homogenization; Dangerous, \nViolent, or Hateful Content \nGV-1.3-005 \nMaintain an updated hierarchy of identified and expected GAI risks connected to \ncontexts of GAI model advancement and use, potentially including specialized risk', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.85 | | cosine_accuracy@3 | 0.96 | | cosine_accuracy@5 | 0.98 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.85 | | cosine_precision@3 | 0.32 | | cosine_precision@5 | 0.196 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.85 | | cosine_recall@3 | 0.96 | | cosine_recall@5 | 0.98 | | cosine_recall@10 | 1.0 | | cosine_ndcg@10 | 0.9343 | | cosine_mrr@10 | 0.9124 | | **cosine_map@100** | **0.9124** | | dot_accuracy@1 | 0.85 | | dot_accuracy@3 | 0.96 | | dot_accuracy@5 | 0.98 | | dot_accuracy@10 | 1.0 | | dot_precision@1 | 0.85 | | dot_precision@3 | 0.32 | | dot_precision@5 | 0.196 | | dot_precision@10 | 0.1 | | dot_recall@1 | 0.85 | | dot_recall@3 | 0.96 | | dot_recall@5 | 0.98 | | dot_recall@10 | 1.0 | | dot_ndcg@10 | 0.9343 | | dot_mrr@10 | 0.9124 | | dot_map@100 | 0.9124 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 600 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 600 samples: | | sentence_0 | sentence_1 | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | What is the title of the publication related to Artificial Intelligence Risk Management by NIST? | NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile



This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1
| | Where can the NIST AI 600-1 publication be accessed for free? | NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile



This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1
| | What is the title of the publication released by NIST in July 2024 regarding AI risk management? | NIST Trustworthy and Responsible AI
NIST AI 600-1
Artificial Intelligence Risk Management
Framework: Generative Artificial
Intelligence Profile



This publication is available free of charge from:
https://doi.org/10.6028/NIST.AI.600-1

July 2024




U.S. Department of Commerce
Gina M. Raimondo, Secretary
National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology
| * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | cosine_map@100 | |:------:|:----:|:--------------:| | 1.0 | 38 | 0.9033 | | 1.3158 | 50 | 0.9067 | | 2.0 | 76 | 0.9124 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.34.2 - Datasets: 3.0.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```