## Example ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper", revision="punct_wrapper-related_words-overfit", # or punct_wrapper-related_words-minevalloss bos_token="", eos_token="", unk_token="", pad_token="", mask_token="", ) model = AutoModelForCausalLM.from_pretrained( "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper", revision="punct_wrapper-related_words-overfit", # or punct_wrapper-related_words-minevalloss pad_token_id=tokenizer.eos_token_id, ).to(device="cuda") model.eval() prompt = "석양이 보이는 경치" wrapped_prompt = f"@{prompt}@" with torch.no_grad(): tokens = tokenizer.encode(wrapped_prompt, return_tensors="pt").to(device="cuda") gen_tokens = model.generate( tokens, max_length=64, repetition_penalty=2.0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, top_k=16, top_p=0.8, ) generated = tokenizer.decode(gen_tokens[0][len(tokens[0]):]) print(generated) ```