--- base_model: openai/whisper-tiny language: - ja library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Japanese Combine 4k - Chee Li results: [] --- # Whisper Tiny Japanese Combine 4k - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Meta JSON Japanese Dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.8869 - Wer: 396.6874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.441 | 4.1322 | 1000 | 2.4726 | 406.5217 | | 1.8098 | 8.2645 | 2000 | 2.0185 | 462.4224 | | 1.2666 | 12.3967 | 3000 | 1.5918 | 404.3478 | | 0.8324 | 16.5289 | 4000 | 1.2738 | 460.8696 | | 0.5744 | 20.6612 | 5000 | 1.0687 | 607.0393 | | 0.3308 | 24.7934 | 6000 | 0.9561 | 532.7122 | | 0.242 | 28.9256 | 7000 | 0.9024 | 461.0766 | | 0.1651 | 33.0579 | 8000 | 0.8869 | 396.6874 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.1