File size: 15,898 Bytes
1e275bf 778e524 1e275bf 778e524 1e275bf 8d3fee9 d995c83 7bf0ac3 778e524 cb2b82e 778e524 f1bbf33 778e524 7bf0ac3 2808233 778e524 8d3fee9 7c91348 8d3fee9 778e524 d995c83 7bf0ac3 d995c83 778e524 cae4858 7bf0ac3 d995c83 1e275bf d995c83 778e524 b839dd6 778e524 32440c9 778e524 cb2b82e 1e275bf d995c83 b43fbd9 778e524 1e275bf 778e524 1e275bf 778e524 cbf9056 778e524 d995c83 778e524 d995c83 778e524 cb2b82e d995c83 778e524 cb2b82e 1e275bf 2808233 1e275bf d995c83 778e524 cbf9056 778e524 1e275bf 778e524 1e275bf 8d3fee9 d995c83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, \
TrainerCallback
from datasets import load_from_disk
from data_handler import DataCollatorCTCWithPadding
from transformers import TrainingArguments
from transformers import Trainer, logging
from metric_utils import compute_metrics_fn
from transformers.trainer_utils import get_last_checkpoint
import json
import os, glob
from callbacks import BreakEachEpoch
import subprocess
from multiprocessing import Process
import shutil
logging.set_verbosity_info()
def load_pretrained_model(checkpoint_path=None):
if checkpoint_path is None:
pre_trained_path = './model-bin/pretrained/base'
tokenizer = Wav2Vec2CTCTokenizer("./model-bin/finetune/vocab.json",
unk_token="<unk>",
pad_token="<pad>",
word_delimiter_token="|")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(pre_trained_path)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
model = Wav2Vec2ForCTC.from_pretrained(
pre_trained_path,
gradient_checkpointing=True,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
)
model.freeze_feature_extractor()
else:
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(checkpoint_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(checkpoint_path)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
model = Wav2Vec2ForCTC.from_pretrained(
checkpoint_path,
gradient_checkpointing=True,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
)
# model.freeze_feature_extractor()
# model = Wav2Vec2ForCTC(model.config)
model_total_params = sum(p.numel() for p in model.parameters())
model_total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(model)
print("model_total_params: {}\nmodel_total_params_trainable: {}".format(model_total_params,
model_total_params_trainable))
return model, processor
def prepare_dataset(batch, processor):
# check that all files have the correct sampling rate
assert (
len(set(batch["sampling_rate"])) == 1
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
batch["length"] = [len(item) for item in batch["input_values"]]
with processor.as_target_processor():
batch["labels"] = processor(batch["target_text"]).input_ids
return batch
def load_prepared_dataset(path, processor, cache_file_filter_name, cache_file_map_name, num_proc=5):
try:
dataset = load_from_disk(path)
list_cache_prefetch_files = glob.glob(
cache_file_map_name.replace(cache_processing_dataset_folder, cache_processing_dataset_folder_prefetch).replace(
'.arrow', '*'))
# Do not re-compute what already in cache folder
if cache_file_map_name.startswith(cache_processing_dataset_folder_prefetch):
if len(glob.glob(cache_file_map_name.replace(cache_processing_dataset_folder_prefetch,
cache_processing_dataset_folder).replace('.arrow', '*'))) > 0:
return
if len(list_cache_prefetch_files) > 0:
return
# check cache file
if len(glob.glob(cache_file_map_name.replace('.arrow', '*'))) == 0 and len(list_cache_prefetch_files) > 0:
for item_file in list_cache_prefetch_files:
shutil.move(item_file, item_file.replace(cache_processing_dataset_folder_prefetch,
cache_processing_dataset_folder))
if len(glob.glob(cache_file_map_name.replace('.arrow', '*'))) > 0:
return dataset.map(prepare_dataset,
remove_columns=dataset.column_names,
batch_size=32,
num_proc=num_proc,
batched=True,
fn_kwargs={"processor": processor},
cache_file_name=cache_file_map_name)
dataset = dataset.filter(lambda example: len(example['speech']) < 160000,
batch_size=32,
num_proc=num_proc,
cache_file_name=cache_file_filter_name)
processed_dataset = dataset.map(prepare_dataset,
remove_columns=dataset.column_names,
batch_size=32,
num_proc=num_proc,
batched=True,
fn_kwargs={"processor": processor},
cache_file_name=cache_file_map_name)
processed_dataset.cleanup_cache_files()
return processed_dataset
except:
return None
def commit_checkpoint():
submit_commands = [
'git add model-bin/finetune/base/*',
'git commit -m "auto-commit"',
'git push origin main'
]
for command in submit_commands:
print(subprocess.run(command.split(), stdout=subprocess.PIPE).stdout.decode('utf-8'))
def get_train_test_shard_id(epoch_count):
# loop over training shards
_train_dataset_shard_idx = epoch_count % num_train_shards
# Get test shard depend on train shard id
_test_dataset_shard_idx = min(round(_train_dataset_shard_idx / (num_train_shards / num_test_shards)), num_test_shards - 1)
_num_test_sub_shard = 8 # Split test shard into subset. Default is 8
_idx_sub_shard = _train_dataset_shard_idx % _num_test_sub_shard # loop over test shard subset
return _train_dataset_shard_idx, _test_dataset_shard_idx, _num_test_sub_shard, _idx_sub_shard
def process_prefetch_epoch(epoch_count):
train_shard_idx, test_shard_idx, _, _ = get_train_test_shard_id(epoch_count)
load_prepared_dataset(os.path.join(train_dataset_root_folder,
'shard_{}'.format(train_shard_idx)),
w2v_ctc_processor,
cache_file_filter_name=os.path.join(cache_processing_dataset_folder_prefetch,
'train',
'cache-train-filter-shard-{}.arrow'.format(
train_shard_idx)),
cache_file_map_name=os.path.join(cache_processing_dataset_folder_prefetch,
'train',
'cache-train-map-shard-{}.arrow'.format(
train_shard_idx)),
)
load_prepared_dataset(os.path.join(test_dataset_root_folder,
'shard_{}'.format(test_shard_idx)),
w2v_ctc_processor,
cache_file_filter_name=os.path.join(cache_processing_dataset_folder_prefetch,
'test',
'cache-test-filter-shard-{}.arrow'.format(
test_shard_idx)),
cache_file_map_name=os.path.join(cache_processing_dataset_folder_prefetch, 'test',
'cache-test-map-shard-{}.arrow'.format(
test_shard_idx))
)
if __name__ == "__main__":
checkpoint_path = "./model-bin/finetune/base/"
# train_dataset_root_folder = './data-bin/train_dataset'
# test_dataset_root_folder = './data-bin/test_dataset'
train_dataset_root_folder = '/content/drive/MyDrive/audio_dataset/train_dataset'
test_dataset_root_folder = '/content/drive/MyDrive/audio_dataset/test_dataset'
cache_processing_dataset_folder = '/dev/shm/cache/'
cache_processing_dataset_folder_prefetch = './data-bin/cache_prefetch/'
if not os.path.exists(os.path.join(cache_processing_dataset_folder, 'train')):
os.makedirs(os.path.join(cache_processing_dataset_folder, 'train'))
os.makedirs(os.path.join(cache_processing_dataset_folder, 'test'))
if not os.path.exists(os.path.join(cache_processing_dataset_folder_prefetch, 'train')):
os.makedirs(os.path.join(cache_processing_dataset_folder_prefetch, 'train'))
os.makedirs(os.path.join(cache_processing_dataset_folder_prefetch, 'test'))
num_train_shards = len(glob.glob(os.path.join(train_dataset_root_folder, 'shard_*')))
num_test_shards = len(glob.glob(os.path.join(test_dataset_root_folder, 'shard_*')))
num_epochs = 5000
training_args = TrainingArguments(
output_dir=checkpoint_path,
fp16=True,
group_by_length=True,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
gradient_accumulation_steps=2,
num_train_epochs=num_epochs, # each epoch per shard data
logging_steps=5,
learning_rate=1e-5,
weight_decay=0.005,
warmup_steps=1000,
save_total_limit=2,
ignore_data_skip=True,
logging_dir=os.path.join(checkpoint_path, 'log'),
metric_for_best_model='wer',
save_strategy="epoch",
evaluation_strategy="epoch",
greater_is_better=False,
# save_steps=5,
# eval_steps=5,
)
trainer = None
# PretrainedConfig.from_json_file(os.path.join(resume_from_checkpoint, CONFIG_NAME))
last_checkpoint_path = None
last_epoch_idx = 0
if os.path.exists(checkpoint_path):
last_checkpoint_path = get_last_checkpoint(checkpoint_path)
if last_checkpoint_path is not None:
with open(os.path.join(last_checkpoint_path, "trainer_state.json"), 'r', encoding='utf-8') as file:
trainer_state = json.load(file)
last_epoch_idx = int(trainer_state['epoch'])
w2v_ctc_model, w2v_ctc_processor = load_pretrained_model()
data_collator = DataCollatorCTCWithPadding(processor=w2v_ctc_processor, padding=True)
prefetch_process = []
for epoch_idx in range(last_epoch_idx, num_epochs):
# # loop over training shards
# train_dataset_shard_idx = epoch_idx % num_train_shards
# # Get test shard depend on train shard id
# test_dataset_shard_idx = round(train_dataset_shard_idx / (num_train_shards / num_test_shards))
# num_test_sub_shard = 8 # Split test shard into subset. Default is 8
# idx_sub_shard = train_dataset_shard_idx % num_test_sub_shard # loop over test shard subset
train_dataset_shard_idx, test_dataset_shard_idx, num_test_sub_shard, idx_sub_shard = get_train_test_shard_id(
epoch_idx)
# waiting for all prefetch process done
for process_instance in prefetch_process:
process_instance.join()
prefetch_process.clear()
# load train shard
train_dataset = load_prepared_dataset(os.path.join(train_dataset_root_folder,
'shard_{}'.format(train_dataset_shard_idx)),
w2v_ctc_processor,
cache_file_filter_name=os.path.join(cache_processing_dataset_folder,
'train',
'cache-train-filter-shard-{}.arrow'.format(
train_dataset_shard_idx)),
cache_file_map_name=os.path.join(cache_processing_dataset_folder,
'train',
'cache-train-map-shard-{}.arrow'.format(
train_dataset_shard_idx)),
) # .shard(1000, 0) # Remove shard split when train
# load test shard subset
test_dataset = load_prepared_dataset(os.path.join(test_dataset_root_folder,
'shard_{}'.format(test_dataset_shard_idx)),
w2v_ctc_processor,
cache_file_filter_name=os.path.join(cache_processing_dataset_folder,
'test',
'cache-test-filter-shard-{}.arrow'.format(
test_dataset_shard_idx)),
cache_file_map_name=os.path.join(cache_processing_dataset_folder, 'test',
'cache-test-map-shard-{}.arrow'.format(
test_dataset_shard_idx))
)
if train_dataset is None or test_dataset is None:
print("Ignore Shard {}".format(train_dataset_shard_idx))
continue
test_dataset = test_dataset.shard(num_test_sub_shard, idx_sub_shard)
# Prefetch_dataset
prefetch_process.append(Process(target=process_prefetch_epoch, args=(epoch_idx + 1,)))
for process_instance in prefetch_process:
process_instance.start()
# Init trainer
if trainer is None:
trainer = Trainer(
model=w2v_ctc_model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics_fn(w2v_ctc_processor),
train_dataset=train_dataset,
eval_dataset=test_dataset,
tokenizer=w2v_ctc_processor.feature_extractor,
callbacks=[BreakEachEpoch()] # Manual break end of epoch because each epoch loop over a shard
)
else:
trainer.train_dataset = train_dataset
trainer.eval_dataset = test_dataset
logging.get_logger().info('Train shard idx: {} / {}'.format(train_dataset_shard_idx + 1, num_train_shards))
logging.get_logger().info(
'Valid shard idx: {} / {} sub_shard: {}'.format(test_dataset_shard_idx + 1, num_test_shards, idx_sub_shard))
if last_checkpoint_path is not None:
# start train from a checkpoint if exist
trainer.train(resume_from_checkpoint=True)
else:
# train from pre-trained wav2vec2 checkpoint
trainer.train()
last_checkpoint_path = get_last_checkpoint(checkpoint_path)
# Clear cache file to free disk
test_dataset.cleanup_cache_files()
train_dataset.cleanup_cache_files()
if epoch_idx % 5 == 0:
commit_checkpoint()
|