CheN70 commited on
Commit
0aa6d3c
·
verified ·
1 Parent(s): 0903c57

Hugging face deep RL course work 1 PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 251.88 +/- 24.01
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c78f26290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c78f26320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c78f263b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c78f26440>", "_build": "<function ActorCriticPolicy._build at 0x7f6c78f264d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c78f26560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6c78f265f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c78f26680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c78f26710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c78f267a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c78f26830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c78f268c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6c1b6461c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732259545774397434, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANbGkT7uL/686HLsOtNtFLlH/Gm+Wuf0uQAAgD8AAIA/ncugPsh7lT0i9Qq+wdhAvqvgNj3+AkG9AAAAAAAAAACwbbg+LKdKPtb3Nr5jOYK+TkhRPXPt7rsAAAAAAAAAAPVZr75Oi6E9Sv/0PUrkU74hTJS7khiuPQAAAAAAAAAAOph6PvsWfT8S2vE+XLQCv71lYD6mbTo9AAAAAAAAAAB9eLe+MgEIPyq0ML4TAsq+WEv2vfW7VTwAAAAAAAAAAAC42jyBGX8+xgNwvSKvaL6m9OU8SL73PAAAAAAAAAAAWuOOPfOsqD8/LLs+03XJvknccz24b7o9AAAAAAAAAAAapK69e8KSujEaITsclRA9hCWZuap59D0AAAAAAACAP02vQj0/8ro/G2xOPtoWOL78na67noNdPQAAAAAAAAAA8zIqvocGWz4Zz7M9AggQvt2gcTzuwXE9AAAAAAAAAABDGac+GtQxPuR0Qb4QAo+9wU05PYMP+bwAAAAAAAAAAMaqFD5VdpY/BlnbPk3O0r7zVwY++n27PQAAAAAAAAAAZsTmvAzIRz8Jmos9gk3DvgV8S7tSvd+7AAAAAAAAAABIDIa+E071Pma+rrwz1Zm+WM6nvbCb7LwAAAAAAAAAAAs8h75RUjI/e48svjymu76yaBC+WDQyPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFUa5oXbduMAWyUTSUBjAF0lEdAozGGc+aBqnV9lChoBkdAcA2pXZGrj2gHTSMBaAhHQKMxspCrtE51fZQoaAZHQHDWXqZ+hGpoB00TAWgIR0CjMvaK1og3dX2UKGgGR0BvwTuDzyz5aAdNKgFoCEdAozPLfgrH2nV9lChoBkdAcQQBClabF2gHTTYBaAhHQKM0Enm7rcF1fZQoaAZHQG7SmCyyD7JoB00wAWgIR0CjNB8vugHvdX2UKGgGR0BwVS05U96kaAdNGgFoCEdAozRuaKDTSnV9lChoBkdAb0xnEl3QlmgHTTIBaAhHQKM0hWxyGSJ1fZQoaAZHQGz0lVLi++NoB01OAWgIR0CjNMhMSK3vdX2UKGgGR0BvUVCeEqUeaAdNbgFoCEdAozUN4/u9e3V9lChoBkdAcTlcbzbvgGgHTVQCaAhHQKM1EhgVoHt1fZQoaAZHQG5IgjyFwkxoB006AWgIR0CjNU5n+Q2ddX2UKGgGR0Bv1hP9DQZ5aAdNLQFoCEdAozXaaoddV3V9lChoBkdAblxhfjS5RWgHTSkBaAhHQKM3Qi1RceN1fZQoaAZHQHEr4RywOe9oB01TAWgIR0CjN8VOCXhPdX2UKGgGR0BB/c/t6X0HaAdNGQFoCEdAozfoGpuMuXV9lChoBkdAcL0/ag261GgHTWUBaAhHQKNBcnZ00WN1fZQoaAZHQDgPO0LMLWtoB0v4aAhHQKNCLwjMV1x1fZQoaAZHQGt+X2dupCNoB00hAWgIR0CjQjk0Jng6dX2UKGgGR0BvehjhDPWyaAdNEwFoCEdAo0MdRceKbnV9lChoBkdAbli9W6shgWgHTUgBaAhHQKNDgTJyQxN1fZQoaAZHQGyoEfDDTBtoB00XAWgIR0CjQ5BGH58CdX2UKGgGR0Bx6yN3np0PaAdNKwFoCEdAo0OfCTEBKnV9lChoBkdAbVLJDmbLEGgHTW0BaAhHQKNDywh4dIZ1fZQoaAZHQG35N5t3wCtoB02LAWgIR0CjRAZjpcHGdX2UKGgGR0Bam24NI9TxaAdN6ANoCEdAo0Q234Kx93V9lChoBkdAatmal1r6+GgHTS0BaAhHQKNEgjYZl4F1fZQoaAZHQHI6W2kSElFoB02lAWgIR0CjROXenAIqdX2UKGgGR0Bt/FXFLnLaaAdNFgFoCEdAo0XfcUM5O3V9lChoBkdAcIAGS6lLvmgHTSEBaAhHQKNGfTqB3A51fZQoaAZHQHFEOLWI42loB00pAWgIR0CjR1EUsWfsdX2UKGgGR0BxWhpGnXNDaAdNhwFoCEdAo0dx08vEj3V9lChoBkdAKuFE7W/ag2gHS+RoCEdAo0ecNrj5sXV9lChoBkdAbzE8ZDRc/2gHTQgBaAhHQKNIL51Ng0F1fZQoaAZHQHAavnwG4ZxoB01pAWgIR0CjSQtp22XtdX2UKGgGR0Btz0K5TZQIaAdNKgFoCEdAo0kszoEB83V9lChoBkdAcWWDsdDIBGgHTUoBaAhHQKNJWTpPhyd1fZQoaAZHQG9PBdld1MdoB00RAWgIR0CjSXRnOB1+dX2UKGgGR0BxFbDziCJ5aAdNIwFoCEdAo0mPozN2T3V9lChoBkdAbzFf+CK77WgHTUIBaAhHQKNJk9CeEqV1fZQoaAZHQHBK/bTMJQdoB00jAWgIR0CjSqzXz19OdX2UKGgGR0BuRpXQtz0ZaAdNKQFoCEdAo0w+cOLBK3V9lChoBkdAX4LldTo+wGgHTegDaAhHQKNMhCN0eU91fZQoaAZHQG+iv4mCyyFoB00yAWgIR0CjTV0vwmVrdX2UKGgGR0BwshbQkX1raAdNHgFoCEdAo04D56+nInV9lChoBkdAcTC/TspobmgHTSwBaAhHQKNO3v6TGHZ1fZQoaAZHQG9FRigCfYloB00fAWgIR0CjT1+3hGYsdX2UKGgGR0BvMXaJyhi9aAdNHAFoCEdAo0+MK5TZQHV9lChoBkdAcOh5jYqXnmgHTToBaAhHQKNPzNeMQ3B1fZQoaAZHQHCmyk9ECvJoB01zAWgIR0CjT9brLQokdX2UKGgGR0Bt3j0rbxmTaAdNNQFoCEdAo1AeI/JNkHV9lChoBkdAcIK9EkSmImgHTUUBaAhHQKNQXhn8Koh1fZQoaAZHQG+R6V+qioNoB00rAWgIR0CjUpMtCiRGdX2UKGgGR0BwB7SmZVn3aAdNPwFoCEdAo1LAKx9oe3V9lChoBkdAcBBcUuctoWgHTRwBaAhHQKNVR5k9U0h1fZQoaAZHQGAUcophF3JoB03oA2gIR0CjVW3YDklvdX2UKGgGR0BwSpUPxx1gaAdNQAFoCEdAo1WR4t6HCXV9lChoBkdAcPpgCwKSgWgHTQsBaAhHQKNWJigkC3h1fZQoaAZHQHB2xKxs2vVoB00cAWgIR0CjVjEQwsXjdX2UKGgGR0BwmDPUrkKeaAdNSAFoCEdAo1+l92HLzXV9lChoBkdAcWgCuU2UCGgHTWsBaAhHQKNgmmdiDul1fZQoaAZHQGD2pvYODrZoB03oA2gIR0CjYsOPNmlJdX2UKGgGR0BufShUR3/xaAdNGAFoCEdAo2XaXQdCFHV9lChoBkdAcXoa2WpqAWgHTRYBaAhHQKNmMyhzvJB1fZQoaAZHQHBVLjkuHvdoB00PAWgIR0CjZtXIlt0ndX2UKGgGR0BiHYf0VafSaAdN6ANoCEdAo2hXEMspX3V9lChoBkdAcaE150KZ2WgHTTgBaAhHQKNogbb1yvN1fZQoaAZHQHIGSCe2/i5oB00MAWgIR0CjaJklNUOvdX2UKGgGR0BwyYUO/cnFaAdNogJoCEdAo2mbVhCtzXV9lChoBkdAUECCrcTJyWgHTegDaAhHQKNqIbXpW3l1fZQoaAZHQHAb1EJBw/BoB00XAWgIR0CjasGNrCWNdX2UKGgGR0BdVRt52QnyaAdN6ANoCEdAo2t9US7GvXV9lChoBkdAb9f/2kBS1mgHTfgBaAhHQKNrm1uR9w51fZQoaAZHQHBaq1b7j1hoB00VAWgIR0CjbMUjC53DdX2UKGgGR0Bs5F9fCyhSaAdNIgFoCEdAo2zWDQJHAnV9lChoBkdAJCDiwSrYG2gHS+JoCEdAo21CqhlDnnV9lChoBkdAY12bZvkzXWgHTegDaAhHQKNt3MW43FV1fZQoaAZHQG10FbNbC79oB00UAWgIR0CjbiOQQtjDdX2UKGgGR0BgRLOZ9d/saAdN6ANoCEdAo25r7oB7u3V9lChoBkdAbo7iGWUr1GgHTSUBaAhHQKNuo9s7+1l1fZQoaAZHQHEgfjCHh0hoB00KAWgIR0CjbvGgi/widX2UKGgGR0BsZXukUKzBaAdNCwFoCEdAo2/fdAPd23V9lChoBkdAPRKWTot+TmgHS/BoCEdAo3ApgiNbT3V9lChoBkdAcJ+56dDpkmgHTSABaAhHQKNw6HTqjah1fZQoaAZHQCM5cX3xnWdoB0vlaAhHQKNw+quKXOZ1fZQoaAZHQHHB6LbYbsFoB02BAWgIR0CjcW8TzunddX2UKGgGR0BgexD7ZWaMaAdN6ANoCEdAo3LAKv3ajHV9lChoBkdAblB3Ux20RmgHTScBaAhHQKNyxbCaZx91fZQoaAZHQG9cIHcDbJxoB0v/aAhHQKNy1e/Ho5h1fZQoaAZHQGv1dVWCEpRoB00OAWgIR0Cjctnyup0fdX2UKGgGR0Bgv+FzuF6BaAdN6ANoCEdAo3LoJC0F83V9lChoBkdAbUaLXL/0d2gHTRkBaAhHQKNzeoKlYU51fZQoaAZHQHBqeO801qFoB00yAWgIR0CjdB6yKNyYdX2UKGgGR0BrOhqoIfKZaAdNnAFoCEdAo3RagTRIBnV9lChoBkdAbRpqcEvCdmgHTQgBaAhHQKN0nJ0W/Jx1fZQoaAZHQG5+EsSTQmhoB01BAWgIR0CjdKn2IwdsdX2UKGgGR0BxSwjOcDr7aAdNFwFoCEdAo3UWrGR3eXV9lChoBkdAYSDXiBGx2WgHTegDaAhHQKN1PyzXz191fZQoaAZHQHGex77bcoJoB00AAWgIR0CjdVw7cO9WdX2UKGgGR0BvvZ7NSqEOaAdNAAFoCEdAo3VqEal1sHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a45f644a284816787061b898289ee54c88965f856f63240fa9d0e4687dfe9818
3
+ size 148015
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c78f26290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c78f26320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c78f263b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c78f26440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6c78f264d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6c78f26560>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6c78f265f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c78f26680>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6c78f26710>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c78f267a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c78f26830>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c78f268c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6c1b6461c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1732259545774397434,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANbGkT7uL/686HLsOtNtFLlH/Gm+Wuf0uQAAgD8AAIA/ncugPsh7lT0i9Qq+wdhAvqvgNj3+AkG9AAAAAAAAAACwbbg+LKdKPtb3Nr5jOYK+TkhRPXPt7rsAAAAAAAAAAPVZr75Oi6E9Sv/0PUrkU74hTJS7khiuPQAAAAAAAAAAOph6PvsWfT8S2vE+XLQCv71lYD6mbTo9AAAAAAAAAAB9eLe+MgEIPyq0ML4TAsq+WEv2vfW7VTwAAAAAAAAAAAC42jyBGX8+xgNwvSKvaL6m9OU8SL73PAAAAAAAAAAAWuOOPfOsqD8/LLs+03XJvknccz24b7o9AAAAAAAAAAAapK69e8KSujEaITsclRA9hCWZuap59D0AAAAAAACAP02vQj0/8ro/G2xOPtoWOL78na67noNdPQAAAAAAAAAA8zIqvocGWz4Zz7M9AggQvt2gcTzuwXE9AAAAAAAAAABDGac+GtQxPuR0Qb4QAo+9wU05PYMP+bwAAAAAAAAAAMaqFD5VdpY/BlnbPk3O0r7zVwY++n27PQAAAAAAAAAAZsTmvAzIRz8Jmos9gk3DvgV8S7tSvd+7AAAAAAAAAABIDIa+E071Pma+rrwz1Zm+WM6nvbCb7LwAAAAAAAAAAAs8h75RUjI/e48svjymu76yaBC+WDQyPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFUa5oXbduMAWyUTSUBjAF0lEdAozGGc+aBqnV9lChoBkdAcA2pXZGrj2gHTSMBaAhHQKMxspCrtE51fZQoaAZHQHDWXqZ+hGpoB00TAWgIR0CjMvaK1og3dX2UKGgGR0BvwTuDzyz5aAdNKgFoCEdAozPLfgrH2nV9lChoBkdAcQQBClabF2gHTTYBaAhHQKM0Enm7rcF1fZQoaAZHQG7SmCyyD7JoB00wAWgIR0CjNB8vugHvdX2UKGgGR0BwVS05U96kaAdNGgFoCEdAozRuaKDTSnV9lChoBkdAb0xnEl3QlmgHTTIBaAhHQKM0hWxyGSJ1fZQoaAZHQGz0lVLi++NoB01OAWgIR0CjNMhMSK3vdX2UKGgGR0BvUVCeEqUeaAdNbgFoCEdAozUN4/u9e3V9lChoBkdAcTlcbzbvgGgHTVQCaAhHQKM1EhgVoHt1fZQoaAZHQG5IgjyFwkxoB006AWgIR0CjNU5n+Q2ddX2UKGgGR0Bv1hP9DQZ5aAdNLQFoCEdAozXaaoddV3V9lChoBkdAblxhfjS5RWgHTSkBaAhHQKM3Qi1RceN1fZQoaAZHQHEr4RywOe9oB01TAWgIR0CjN8VOCXhPdX2UKGgGR0BB/c/t6X0HaAdNGQFoCEdAozfoGpuMuXV9lChoBkdAcL0/ag261GgHTWUBaAhHQKNBcnZ00WN1fZQoaAZHQDgPO0LMLWtoB0v4aAhHQKNCLwjMV1x1fZQoaAZHQGt+X2dupCNoB00hAWgIR0CjQjk0Jng6dX2UKGgGR0BvehjhDPWyaAdNEwFoCEdAo0MdRceKbnV9lChoBkdAbli9W6shgWgHTUgBaAhHQKNDgTJyQxN1fZQoaAZHQGyoEfDDTBtoB00XAWgIR0CjQ5BGH58CdX2UKGgGR0Bx6yN3np0PaAdNKwFoCEdAo0OfCTEBKnV9lChoBkdAbVLJDmbLEGgHTW0BaAhHQKNDywh4dIZ1fZQoaAZHQG35N5t3wCtoB02LAWgIR0CjRAZjpcHGdX2UKGgGR0Bam24NI9TxaAdN6ANoCEdAo0Q234Kx93V9lChoBkdAatmal1r6+GgHTS0BaAhHQKNEgjYZl4F1fZQoaAZHQHI6W2kSElFoB02lAWgIR0CjROXenAIqdX2UKGgGR0Bt/FXFLnLaaAdNFgFoCEdAo0XfcUM5O3V9lChoBkdAcIAGS6lLvmgHTSEBaAhHQKNGfTqB3A51fZQoaAZHQHFEOLWI42loB00pAWgIR0CjR1EUsWfsdX2UKGgGR0BxWhpGnXNDaAdNhwFoCEdAo0dx08vEj3V9lChoBkdAKuFE7W/ag2gHS+RoCEdAo0ecNrj5sXV9lChoBkdAbzE8ZDRc/2gHTQgBaAhHQKNIL51Ng0F1fZQoaAZHQHAavnwG4ZxoB01pAWgIR0CjSQtp22XtdX2UKGgGR0Btz0K5TZQIaAdNKgFoCEdAo0kszoEB83V9lChoBkdAcWWDsdDIBGgHTUoBaAhHQKNJWTpPhyd1fZQoaAZHQG9PBdld1MdoB00RAWgIR0CjSXRnOB1+dX2UKGgGR0BxFbDziCJ5aAdNIwFoCEdAo0mPozN2T3V9lChoBkdAbzFf+CK77WgHTUIBaAhHQKNJk9CeEqV1fZQoaAZHQHBK/bTMJQdoB00jAWgIR0CjSqzXz19OdX2UKGgGR0BuRpXQtz0ZaAdNKQFoCEdAo0w+cOLBK3V9lChoBkdAX4LldTo+wGgHTegDaAhHQKNMhCN0eU91fZQoaAZHQG+iv4mCyyFoB00yAWgIR0CjTV0vwmVrdX2UKGgGR0BwshbQkX1raAdNHgFoCEdAo04D56+nInV9lChoBkdAcTC/TspobmgHTSwBaAhHQKNO3v6TGHZ1fZQoaAZHQG9FRigCfYloB00fAWgIR0CjT1+3hGYsdX2UKGgGR0BvMXaJyhi9aAdNHAFoCEdAo0+MK5TZQHV9lChoBkdAcOh5jYqXnmgHTToBaAhHQKNPzNeMQ3B1fZQoaAZHQHCmyk9ECvJoB01zAWgIR0CjT9brLQokdX2UKGgGR0Bt3j0rbxmTaAdNNQFoCEdAo1AeI/JNkHV9lChoBkdAcIK9EkSmImgHTUUBaAhHQKNQXhn8Koh1fZQoaAZHQG+R6V+qioNoB00rAWgIR0CjUpMtCiRGdX2UKGgGR0BwB7SmZVn3aAdNPwFoCEdAo1LAKx9oe3V9lChoBkdAcBBcUuctoWgHTRwBaAhHQKNVR5k9U0h1fZQoaAZHQGAUcophF3JoB03oA2gIR0CjVW3YDklvdX2UKGgGR0BwSpUPxx1gaAdNQAFoCEdAo1WR4t6HCXV9lChoBkdAcPpgCwKSgWgHTQsBaAhHQKNWJigkC3h1fZQoaAZHQHB2xKxs2vVoB00cAWgIR0CjVjEQwsXjdX2UKGgGR0BwmDPUrkKeaAdNSAFoCEdAo1+l92HLzXV9lChoBkdAcWgCuU2UCGgHTWsBaAhHQKNgmmdiDul1fZQoaAZHQGD2pvYODrZoB03oA2gIR0CjYsOPNmlJdX2UKGgGR0BufShUR3/xaAdNGAFoCEdAo2XaXQdCFHV9lChoBkdAcXoa2WpqAWgHTRYBaAhHQKNmMyhzvJB1fZQoaAZHQHBVLjkuHvdoB00PAWgIR0CjZtXIlt0ndX2UKGgGR0BiHYf0VafSaAdN6ANoCEdAo2hXEMspX3V9lChoBkdAcaE150KZ2WgHTTgBaAhHQKNogbb1yvN1fZQoaAZHQHIGSCe2/i5oB00MAWgIR0CjaJklNUOvdX2UKGgGR0BwyYUO/cnFaAdNogJoCEdAo2mbVhCtzXV9lChoBkdAUECCrcTJyWgHTegDaAhHQKNqIbXpW3l1fZQoaAZHQHAb1EJBw/BoB00XAWgIR0CjasGNrCWNdX2UKGgGR0BdVRt52QnyaAdN6ANoCEdAo2t9US7GvXV9lChoBkdAb9f/2kBS1mgHTfgBaAhHQKNrm1uR9w51fZQoaAZHQHBaq1b7j1hoB00VAWgIR0CjbMUjC53DdX2UKGgGR0Bs5F9fCyhSaAdNIgFoCEdAo2zWDQJHAnV9lChoBkdAJCDiwSrYG2gHS+JoCEdAo21CqhlDnnV9lChoBkdAY12bZvkzXWgHTegDaAhHQKNt3MW43FV1fZQoaAZHQG10FbNbC79oB00UAWgIR0CjbiOQQtjDdX2UKGgGR0BgRLOZ9d/saAdN6ANoCEdAo25r7oB7u3V9lChoBkdAbo7iGWUr1GgHTSUBaAhHQKNuo9s7+1l1fZQoaAZHQHEgfjCHh0hoB00KAWgIR0CjbvGgi/widX2UKGgGR0BsZXukUKzBaAdNCwFoCEdAo2/fdAPd23V9lChoBkdAPRKWTot+TmgHS/BoCEdAo3ApgiNbT3V9lChoBkdAcJ+56dDpkmgHTSABaAhHQKNw6HTqjah1fZQoaAZHQCM5cX3xnWdoB0vlaAhHQKNw+quKXOZ1fZQoaAZHQHHB6LbYbsFoB02BAWgIR0CjcW8TzunddX2UKGgGR0BgexD7ZWaMaAdN6ANoCEdAo3LAKv3ajHV9lChoBkdAblB3Ux20RmgHTScBaAhHQKNyxbCaZx91fZQoaAZHQG9cIHcDbJxoB0v/aAhHQKNy1e/Ho5h1fZQoaAZHQGv1dVWCEpRoB00OAWgIR0Cjctnyup0fdX2UKGgGR0Bgv+FzuF6BaAdN6ANoCEdAo3LoJC0F83V9lChoBkdAbUaLXL/0d2gHTRkBaAhHQKNzeoKlYU51fZQoaAZHQHBqeO801qFoB00yAWgIR0CjdB6yKNyYdX2UKGgGR0BrOhqoIfKZaAdNnAFoCEdAo3RagTRIBnV9lChoBkdAbRpqcEvCdmgHTQgBaAhHQKN0nJ0W/Jx1fZQoaAZHQG5+EsSTQmhoB01BAWgIR0CjdKn2IwdsdX2UKGgGR0BxSwjOcDr7aAdNFwFoCEdAo3UWrGR3eXV9lChoBkdAYSDXiBGx2WgHTegDaAhHQKN1PyzXz191fZQoaAZHQHGex77bcoJoB00AAWgIR0CjdVw7cO9WdX2UKGgGR0BvvZ7NSqEOaAdNAAFoCEdAo3VqEal1sHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed86de43ff42403205c4ee3c383c7667ae78cd523d16074bb33937ce44ef5343
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:393cf616d965e80569f9e18521e45bfb387bbccf4173e8ceb1a30b26136671b1
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (190 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.88342680000005, "std_reward": 24.012128754986488, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-22T07:31:29.902655"}