muPPIt / muppit /sample.py
AlienChen's picture
Upload 139 files
65bd8af verified
import os
import hydra
import lightning as L
import numpy as np
import omegaconf
import pandas as pd
import rdkit
import rich.syntax
import rich.tree
import torch
from tqdm.auto import tqdm
import esm
import pdb
import dataloader
import diffusion
from models.classifier import muPPIt
rdkit.rdBase.DisableLog('rdApp.error')
omegaconf.OmegaConf.register_new_resolver(
'cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver(
'device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver(
'eval', eval)
omegaconf.OmegaConf.register_new_resolver(
'div_up', lambda x, y: (x + y - 1) // y)
omegaconf.OmegaConf.register_new_resolver(
'if_then_else',
lambda condition, x, y: x if condition else y
)
vhse8_values = {
'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}
aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}
vhse8_tensor = torch.zeros(24, 8)
for aa, values in vhse8_values.items():
aa_index = aa_to_idx[aa]
vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor.requires_grad = False
esm_model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
esm_model.eval()
def precompute_embedding(sequence, tokenizer):
tokens = tokenizer(sequence, return_tensors='pt')['input_ids']
with torch.no_grad():
embed = esm_model(tokens, repr_layers=[33], return_contacts=False)["representations"][33]
vhse8_embed = vhse8_tensor[tokens]
return torch.concat([embed, vhse8_embed], dim=-1)
@hydra.main(version_base=None, config_path='./configs',
config_name='config')
def main(config: omegaconf.DictConfig) -> None:
# Reproducibility
L.seed_everything(config.seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.benchmark = False
# _print_config(config, resolve=True)
print(f"Checkpoint: {config.eval.checkpoint_path}")
tokenizer = dataloader.get_tokenizer(config)
pretrained = diffusion.Diffusion.load_from_checkpoint(
config.eval.checkpoint_path,
tokenizer=tokenizer,
config=config, logger=False)
pretrained.eval()
muppit = muPPIt(d_node=1288, d_k=32, d_v=32, n_heads=4, lr=None)
muppit.load_state_dict(torch.load(config.guidance.classifier_checkpoint_path))
muppit.eval()
mut_embed = precompute_embedding(config.eval.mutant, tokenizer)
wt_embed = precompute_embedding(config.eval.wildtype, tokenizer)
samples = []
for _ in tqdm(
range(config.sampling.num_sample_batches),
desc='Gen. batches', leave=False):
sample = pretrained.sample(
wt_embed = wt_embed,
mut_embed = mut_embed,
classifier_model = muppit
)
samples.extend(
pretrained.tokenizer.batch_decode(sample))
print('\n')
print([sample.replace(' ', '')[5:-5] for sample in samples])
samples = [sample.replace(' ', '')[5:-5] for sample in samples]
print('\n')
print(samples)
if __name__ == '__main__':
main()