File size: 8,466 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import torch
from torch.utils.data import DataLoader, Subset
from torch.optim import AdamW
import torch.nn.functional as F
import torch.nn as nn
from datasets import load_from_disk
import esm
import numpy as np
import math
import os
from transformers import AutoTokenizer
from torch.optim.lr_scheduler import CosineAnnealingLR
from transformers import get_linear_schedule_with_warmup
from tqdm import tqdm
from torch.cuda.amp import autocast, GradScaler
import gc
import pdb
import pandas as pd
from collections import defaultdict
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
##################### Hyper-parameters #############################################
binder = 'STKKDEREYKSPAEIAEFLF'
wildtype = 'LAAVSVDCSEYPKPACTLEYRPLCGSDNKTYGNKCNFCNAVVESNGTLTLSHFGKC'
mutant = 'LAAVSVDCSEYPKPACTLEYRPLCGSDNKTYRNKCNFCNAVVESNGTLTLSHFGKC'
max_epochs = 30
batch_size = 4
lr = 1e-4
dropout = 0.1
margin = 10
accumulation_steps = 16
num_heads = 4
checkpoint_path = '/home/tc415/muPPIt_embedding/checkpoints/improved_train_5/epoch=28_acc=0.59'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('''
max_epochs = 30
batch_size = 4
lr = 1e-4
dropout = 0.1
margin = 10
accumulation_steps = 16
''')
####################################################################################
vhse8_values = {
'A': [0.15, -1.11, -1.35, -0.92, 0.02, -0.91, 0.36, -0.48],
'R': [-1.47, 1.45, 1.24, 1.27, 1.55, 1.47, 1.30, 0.83],
'N': [-0.99, 0.00, 0.69, -0.37, -0.55, 0.85, 0.73, -0.80],
'D': [-1.15, 0.67, -0.41, -0.01, -2.68, 1.31, 0.03, 0.56],
'C': [0.18, -1.67, -0.21, 0.00, 1.20, -1.61, -0.19, -0.41],
'Q': [-0.96, 0.12, 0.18, 0.16, 0.09, 0.42, -0.20, -0.41],
'E': [-1.18, 0.40, 0.10, 0.36, -2.16, -0.17, 0.91, 0.36],
'G': [-0.20, -1.53, -2.63, 2.28, -0.53, -1.18, -1.34, 1.10],
'H': [-0.43, -0.25, 0.37, 0.19, 0.51, 1.28, 0.93, 0.65],
'I': [1.27, 0.14, 0.30, -1.80, 0.30, -1.61, -0.16, -0.13],
'L': [1.36, 0.07, 0.26, -0.80, 0.22, -1.37, 0.08, -0.62],
'K': [-1.17, 0.70, 0.80, 1.64, 0.67, 1.63, 0.13, -0.01],
'M': [1.01, -0.53, 0.43, 0.00, 0.23, 0.10, -0.86, -0.68],
'F': [1.52, 0.61, 0.95, -0.16, 0.25, 0.28, -1.33, -0.65],
'P': [0.22, -0.17, -0.50, -0.05, 0.01, -1.34, 0.19, 3.56],
'S': [-0.67, -0.86, -1.07, -0.41, -0.32, 0.27, -0.64, 0.11],
'T': [-0.34, -0.51, -0.55, -1.06, 0.01, -0.01, -0.79, 0.39],
'W': [1.50, 2.06, 1.79, 0.75, 0.75, 0.13, -1.06, -0.85],
'Y': [0.61, 1.60, 1.17, 0.73, 0.53, 0.25, -0.96, -0.52],
'V': [0.76, -0.92, 0.17, -1.91, 0.22, -1.40, -0.24, -0.03],
}
aa_to_idx = {'A': 5, 'R': 10, 'N': 17, 'D': 13, 'C': 23, 'Q': 16, 'E': 9, 'G': 6, 'H': 21, 'I': 12, 'L': 4, 'K': 15, 'M': 20, 'F': 18, 'P': 14, 'S': 8, 'T': 11, 'W': 22, 'Y': 19, 'V': 7}
vhse8_tensor = torch.zeros(33, 8)
for aa, values in vhse8_values.items():
aa_index = aa_to_idx[aa]
vhse8_tensor[aa_index] = torch.tensor(values)
vhse8_tensor = vhse8_tensor.to(device)
vhse8_tensor.requires_grad = False
class muPPIt(torch.nn.Module):
def __init__(self, d_node, num_heads, margin, lr, device):
super(muPPIt, self).__init__()
self.esm, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
for param in self.esm.parameters():
param.requires_grad = False
self.attention = torch.nn.MultiheadAttention(embed_dim=d_node, num_heads=num_heads)
self.layer_norm = torch.nn.LayerNorm(d_node)
self.map = torch.nn.Sequential(
torch.nn.Linear(d_node, d_node // 2),
torch.nn.SiLU(),
torch.nn.Linear(d_node // 2, 1)
)
for layer in self.map:
if isinstance(layer, nn.Linear):
nn.init.kaiming_uniform_(layer.weight, a=0, mode='fan_in', nonlinearity='leaky_relu')
if layer.bias is not None:
nn.init.zeros_(layer.bias)
self.margin = margin
self.learning_rate = lr
self.loss_threshold = 20 # Set a threshold for identifying hard examples
self.device = device
# Easy and hard example tracking
self.easy_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/ppiref_index.npy').tolist()
self.hard_example_indices = np.load('/home/tc415/muPPIt_embedding/dataset/skempi_index.npy').tolist()
def forward(self, binder_tokens, wt_tokens, mut_tokens):
device = self.device
global vhse8_tensor
with torch.no_grad():
binder_pad_mask = (binder_tokens != self.alphabet.padding_idx).int()
binder_embed = self.esm(binder_tokens, repr_layers=[33], return_contacts=False)["representations"][33] * binder_pad_mask.unsqueeze(-1)
binder_vhse8 = vhse8_tensor[binder_tokens]
binder_embed = torch.concat([binder_embed, binder_vhse8], dim=-1)
mut_pad_mask = (mut_tokens != self.alphabet.padding_idx).int()
mut_embed = self.esm(mut_tokens, repr_layers=[33], return_contacts=False)["representations"][33] * mut_pad_mask.unsqueeze(-1)
mut_vhse8 = vhse8_tensor[mut_tokens]
mut_embed = torch.concat([mut_embed, mut_vhse8], dim=-1)
wt_pad_mask = (wt_tokens != self.alphabet.padding_idx).int()
wt_embed = self.esm(wt_tokens, repr_layers=[33], return_contacts=False)["representations"][33] * wt_pad_mask.unsqueeze(-1)
wt_vhse8 = vhse8_tensor[wt_tokens]
wt_embed = torch.concat([wt_embed, wt_vhse8], dim=-1)
binder_wt = torch.concat([binder_embed, wt_embed], dim=1)
binder_mut = torch.concat([binder_embed, mut_embed], dim=1)
binder_wt = binder_wt.transpose(0,1)
binder_mut = binder_mut.transpose(0,1)
binder_wt_attn, _ = self.attention(binder_wt, binder_wt, binder_wt)
binder_mut_attn, _ = self.attention(binder_mut, binder_mut, binder_mut)
binder_wt_attn = binder_wt + binder_wt_attn
binder_mut_attn = binder_mut + binder_mut_attn
binder_wt_attn = binder_wt_attn.transpose(0, 1)
binder_mut_attn = binder_mut_attn.transpose(0, 1)
binder_wt_attn = self.layer_norm(binder_wt_attn)
binder_mut_attn = self.layer_norm(binder_mut_attn)
mapped_binder_wt = self.map(binder_wt_attn).squeeze(-1) # B*(L1+L2)
mapped_binder_mut = self.map(binder_mut_attn).squeeze(-1) # B*(L1+L2)
distance = torch.sqrt(torch.sum((mapped_binder_wt - mapped_binder_mut) ** 2, dim=-1))
return distance
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
def predict(model, binder, wildtype, mutant):
global tokenizer
binder_tokens = torch.tensor(tokenizer(binder)['input_ids']).unsqueeze(0).to(device)
wt_tokens = torch.tensor(tokenizer(wildtype)['input_ids']).unsqueeze(0).to(device)
mut_tokens = torch.tensor(tokenizer(mutant)['input_ids']).unsqueeze(0).to(device)
distance = model.forward(binder_tokens, wt_tokens, mut_tokens)
return distance
def compute_mean(tuple_list):
sum_count_dict = defaultdict(lambda: [0, 0]) # [sum, count]
# Iterate through the list and update the sum and count
for key, value in tuple_list:
sum_count_dict[key][0] += value # Sum of tuple[1] for the same tuple[0]
sum_count_dict[key][1] += 1 # Count the occurrences
# Calculate the mean for each unique tuple[0]
mean_dict = {key: round(sum_value[0] / sum_value[1],2) for key, sum_value in sum_count_dict.items()}
print(dict(sorted(mean_dict.items())))
model = muPPIt(d_node=1288, num_heads=num_heads, margin=margin, lr=lr, device=device).to(device)
model.load_state_dict(torch.load(checkpoint_path))
model.eval()
# df = pd.read_csv('/home/tc415/muPPIt_embedding/dataset/skempi_test.csv')
# results = []
# for index, row in tqdm(df.iterrows(), total=len(df)):
# binder = row['binder']
# wildtype = row['wt']
# mutant = row['mut']
# mut_aff = np.log10(row['mut_affinity'])
# wt_aff = np.log10(row['wt_affinity'])
# with torch.no_grad():
# distance = predict(model, binder, wildtype, mutant)
# results.append((int(abs(wt_aff - mut_aff)), distance.item()))
# compute_mean(results)
binders = ['LCVECMATRVQLECNLCSNV', 'STKKDEREYKSPAEIAEFLF', 'RVIYVQSKIKLSKSQKKSKS', 'GMKQKROLVSAVVKAPAMTA', 'GRDRKQVSESPEYSLKSRKK', 'NEFIVIDTSIDIGPPRSRQA']
for binder in binders:
distance = predict(model, binder, wildtype, mutant)
print(f"Distance = {distance}")
|