File size: 17,834 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import itertools
import typing
import hydra.utils
import lightning as L
import torch
import torch.nn.functional as F
import torchmetrics
import transformers
import dataloader
import models.dit
import noise_schedule
class MicroAveragingMetric(torchmetrics.Metric):
"""Micro-averaging metric.
Adapted from https://github.com/HazyResearch/hyena-dna/blob/main/src/tasks/metrics.py#L12
"""
def __init__(self, class_idx: typing.Optional[int] = 1,
dist_sync_on_step=False):
super().__init__(dist_sync_on_step=dist_sync_on_step)
self.class_idx = torch.tensor(class_idx) \
if class_idx is not None else None
self.add_state("numerator", default=torch.tensor(0.0),
dist_reduce_fx="sum")
self.add_state("denominator", default=torch.tensor(0.0),
dist_reduce_fx="sum")
def _update(
self, numerator, denominator, preds, y) -> tuple:
raise NotImplementedError
def update(self, logits: torch.Tensor, y: torch.Tensor):
# update metric states
preds = torch.argmax(logits, dim=-1)
y = y.view(-1)
assert preds.shape == y.shape, \
f"preds shape {preds.shape} != y shape {y.shape}"
self.numerator, self.denominator = self._update(
self.numerator, self.denominator, preds, y)
def compute(self):
# compute final result
value = self.numerator.float() / self.denominator \
if self.denominator.item() > 0. else torch.tensor(0.0)
return value
def reset(self):
self.numerator = torch.tensor(0.0).to(self.device)
self.denominator = torch.tensor(0.0).to(self.device)
class CrossEntropy(MicroAveragingMetric):
"""Calculates cross-entropy loss."""
def _update(
self, numerator, denominator, logits, y) -> tuple:
with torch.no_grad():
numerator += F.cross_entropy(
logits.view(-1, logits.size(-1)),
y.view(-1),
ignore_index=-100,
reduction='sum')
denominator += y.numel()
return numerator, denominator
# Overrides parent class to use logits and not (argmax) preds
def update(self, logits: torch.Tensor, y: torch.Tensor):
y = y.view(-1)
self.numerator, self.denominator = self._update(
self.numerator, self.denominator, logits, y)
class Accuracy(MicroAveragingMetric):
"""Calculates accuracy.
Can be used to calculate accuracy per class.
Copied from:
https://github.com/HazyResearch/hyena-dna/blob/main/src/tasks/metrics.py
"""
def _update(
self, numerator, denominator, preds, y) -> tuple:
if self.class_idx is None:
numerator += (preds == y).sum()
denominator += y.numel()
else:
class_idx = self.class_idx
relevant_idxs = (y == class_idx)
numerator += (preds[relevant_idxs] == class_idx).sum()
denominator += relevant_idxs.sum()
relevant_idxs = (y != class_idx)
numerator += (preds[relevant_idxs] != class_idx).sum()
denominator += relevant_idxs.sum()
return numerator, denominator
class Precision(MicroAveragingMetric):
"""Calculates precision.
Can be used to calculate precision per class.
Adapted from:
https://github.com/HazyResearch/hyena-dna/blob/main/src/tasks/metrics.py
"""
def _update(self, numerator, denominator, preds, y) -> tuple:
class_idx = self.class_idx
relevant_idxs = (preds == class_idx)
numerator += (y[relevant_idxs] == class_idx).sum()
denominator += relevant_idxs.sum()
return numerator, denominator
class Recall(MicroAveragingMetric):
"""Calculate recall.
Can be used to calculate recall per class.
Adapted from:
https://github.com/HazyResearch/hyena-dna/blob/main/src/tasks/metrics.py
"""
def _update(self, numerator, denominator, preds, y) -> tuple:
class_idx = self.class_idx
relevant_idxs = (y == class_idx)
numerator += (preds[relevant_idxs] == class_idx).sum()
denominator += relevant_idxs.sum()
return numerator, denominator
class Classifier(L.LightningModule):
def __init__(
self,
config,
tokenizer: transformers.PreTrainedTokenizer,
pretrained_backbone: typing.Optional[torch.nn.Module] = None):
super().__init__()
self.save_hyperparameters(ignore=['pretrained_backbone'])
self.config = config
# This param indicates whether this model will be used
# for guidance (False) or only evaluation (True).
self.is_eval_classifier = getattr(
config, 'is_eval_classifier', False)
self.tokenizer = tokenizer
self.vocab_size = tokenizer.vocab_size
self.antithetic_sampling = config.training.antithetic_sampling
self.importance_sampling = config.training.importance_sampling
self.change_of_variables = config.training.change_of_variables
if (not hasattr(self.tokenizer, 'mask_token')
or self.tokenizer.mask_token is None):
self.mask_index = self.vocab_size
self.vocab_size += 1
else:
self.mask_index = self.tokenizer.mask_token_id
if config.classifier_backbone == 'dit':
self.classifier_model = models.dit.DITClassifier(
self.config, vocab_size=self.vocab_size)
elif self.config.classifier_backbone == 'dimamba':
self.classifier_model = models.dimamba.DiMambaClassifier(
self.config, vocab_size=self.vocab_size,
pad_token_id=self.tokenizer.pad_token_id)
elif config.classifier_backbone == 'hyenadna':
hyena_config = transformers.AutoConfig.from_pretrained(
config.classifier_model.hyena_model_name_or_path,
n_layer=config.classifier_model.n_layer,
trust_remote_code=True
)
self.classifier_model = transformers.AutoModelForSequenceClassification.from_config(
hyena_config,
pretrained=False,
num_labels=config.data.num_classes,
problem_type='single_label_classification',
trust_remote_code=True
)
else:
raise NotImplementedError(
f"Classifier backbone "
f"{self.config.classifier_backbone} not "
f"implemented.")
if pretrained_backbone is not None: # For PPLM / NOS
self.classifier_model.load_pretrained_encoder(
pretrained_backbone)
# Metrics are automatically reset at end of epoch
metrics = torchmetrics.MetricCollection({
'cross_entropy': CrossEntropy(),
'accuracy': Accuracy(class_idx=None),
})
if config.data.num_classes > 2:
for c in range(config.data.num_classes):
metrics.add_metrics(
{f"accuracy_class{c}": Accuracy(class_idx=c),
f"precision_class{c}": Precision(class_idx=c),
f"recall_class{c}": Recall(class_idx=c)})
else:
metrics.add_metrics(
{'precision': Precision(class_idx=1),
'recall': Recall(class_idx=1)})
metrics.set_dtype(torch.float64)
self.train_metrics = metrics.clone(prefix='train/')
self.valid_metrics = metrics.clone(prefix='val/')
self.T = config.T
self.noise = noise_schedule.get_noise(config,
dtype=self.dtype)
self.sampling_eps = config.training.sampling_eps
self.lr = config.optim.lr
self.time_conditioning = config.time_conditioning
self.fast_forward_epochs = None
self.fast_forward_batches = None
def on_load_checkpoint(self, checkpoint):
# Copied from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py#L41
self.fast_forward_epochs = checkpoint['loops'][
'fit_loop']['epoch_progress']['current']['completed']
self.fast_forward_batches = checkpoint['loops'][
'fit_loop']['epoch_loop.batch_progress'][
'current']['completed']
def on_save_checkpoint(self, checkpoint):
# Copied from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/tasks/seq.py
# ['epoch_loop.batch_progress']['total']['completed'] is
# 1 iteration behind, so we're using the optimizer's
# progress.
checkpoint['loops']['fit_loop'][
'epoch_loop.batch_progress']['total'][
'completed'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['total'][
'completed'] * self.trainer.accumulate_grad_batches
checkpoint['loops']['fit_loop'][
'epoch_loop.batch_progress']['current'][
'completed'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['current'][
'completed'] * self.trainer.accumulate_grad_batches
# _batches_that_stepped tracks the number of global
# steps, not the number of local steps, so we don't
# multiply with self.trainer.accumulate_grad_batches
# here.
checkpoint['loops']['fit_loop'][
'epoch_loop.state_dict'][
'_batches_that_stepped'] = \
checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['total']['completed']
if 'sampler' not in checkpoint.keys():
checkpoint['sampler'] = {}
if hasattr(self.trainer.train_dataloader.sampler,
'state_dict'):
sampler_state_dict = self.trainer. \
train_dataloader.sampler.state_dict()
checkpoint['sampler'][
'random_state'] = sampler_state_dict.get(
'random_state', None)
else:
checkpoint['sampler']['random_state'] = None
def on_train_start(self):
# Adapted from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
distributed = (
self.trainer._accelerator_connector.use_distributed_sampler
and self.trainer._accelerator_connector.is_distributed)
if distributed:
sampler_cls = dataloader.FaultTolerantDistributedSampler
else:
sampler_cls = dataloader.RandomFaultTolerantSampler
updated_dls = []
for dl in self.trainer.fit_loop._combined_loader.flattened:
if hasattr(dl.sampler, 'shuffle'):
dl_sampler = sampler_cls(
dl.dataset, shuffle=dl.sampler.shuffle)
else:
dl_sampler = sampler_cls(dl.dataset)
if (distributed
and self.fast_forward_epochs is not None
and self.fast_forward_batches is not None):
dl_sampler.load_state_dict({
'epoch': self.fast_forward_epochs,
'counter': (self.fast_forward_batches
* self.config.loader.batch_size)})
updated_dls.append(
torch.utils.data.DataLoader(
dl.dataset,
batch_size=self.config.loader.batch_size,
num_workers=self.config.loader.num_workers,
pin_memory=self.config.loader.pin_memory,
sampler=dl_sampler,
shuffle=False,
persistent_workers=self.config.loader.persistent_workers
))
self.trainer.fit_loop._combined_loader.flattened = updated_dls
def forward(self, x, sigma=None, x_emb=None, attention_mask=None):
"""Returns logits.
x_emb can be provided during PPLM / NoS-style guidance
(see: https://arxiv.org/abs/2305.20009).
"""
if self.is_eval_classifier:
logits = self.classifier_model(x)
if hasattr(logits, 'logits'):
logits = logits.logits
else:
sigma = self._process_sigma(sigma) if sigma is not None else sigma
with torch.cuda.amp.autocast(dtype=torch.float32):
logits = self.classifier_model(x, sigma, x_emb=x_emb, attention_mask=attention_mask)
return logits
def get_log_probs(self, x, sigma, x_emb=None):
"""Returns log probabilities.
Use for CBG-style guidance.
"""
if self.is_eval_classifier:
raise NotImplementedError(
'`get_log_prob` not implemented for classifiers '
'that are meant to be used for evaluation purposes '
'only.')
with torch.cuda.amp.autocast(dtype=torch.float32):
return torch.nn.functional.log_softmax(
self.forward(x, sigma, x_emb=x_emb), dim=-1)
def training_step(self, batch, batch_idx):
loss = self._compute_loss(batch, prefix='train')
self.log(name='trainer/loss',
value=loss.item(),
on_step=True,
on_epoch=False,
sync_dist=True,
prog_bar=True)
self.log(name='lr',
value=
self.trainer.optimizers[0].param_groups[0][
'lr'],
on_step=True,
on_epoch=False,
sync_dist=True,
prog_bar=True, logger=False)
return loss
def validation_step(self, batch, batch_idx):
return self._compute_loss(batch, prefix='val')
def configure_optimizers(self):
# TODO(yair): Lightning currently giving this warning when using `fp16`:
# "Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
# Not clear if this is a problem or not.
# See: https://github.com/Lightning-AI/pytorch-lightning/issues/5558
optimizer = torch.optim.AdamW(
itertools.chain(self.classifier_model.parameters(),
self.noise.parameters()),
lr=self.config.optim.lr,
betas=(self.config.optim.beta1,
self.config.optim.beta2),
eps=self.config.optim.eps,
weight_decay=self.config.optim.weight_decay)
scheduler = hydra.utils.instantiate(
self.config.lr_scheduler, optimizer=optimizer)
scheduler_dict = {
'scheduler': scheduler,
'interval': 'step',
'monitor': 'val/loss',
'name': 'trainer/lr',
}
return [optimizer], [scheduler_dict]
def _q_xt(self, x, move_chance):
"""Computes the noisy sample xt.
Args:
x: int torch.Tensor with shape (batch_size,
diffusion_model_input_length), input.
move_chance: float torch.Tensor with shape
(batch_size, 1).
"""
move_indices = torch.rand(
*x.shape, device=x.device) < move_chance
if self.config.diffusion == 'absorbing_state':
return torch.where(move_indices, self.mask_index, x)
if self.config.diffusion == 'uniform':
uniform_tensor = torch.randint(
0, self.vocab_size, x.shape, device=x.device)
return torch.where(move_indices, uniform_tensor, x)
raise NotImplementedError(
f'Diffusion type {self.config.diffusion} not '
'implemented.')
def _compute_loss(self, batch, prefix):
x0 = batch['input_ids']
attention_mask = batch['attention_mask']
t = None
if self.is_eval_classifier:
logits = self.forward(x0)
elif self.config.parameterization == 'ar':
# do not add noise for AR FUDGE and AR PPLM
logits = self.forward(
x0, attention_mask=attention_mask)
else:
t = self._sample_t(x0.shape[0])
if self.T > 0:
t = (t * self.T).to(torch.int)
t = t / self.T
# t \in {1/T, 2/T, ..., 1}
t += (1 / self.T)
if self.change_of_variables:
time_conditioning = t[:, None]
f_T = torch.log1p(- torch.exp(- self.noise.sigma_max))
f_0 = torch.log1p(- torch.exp(- self.noise.sigma_min))
move_chance = torch.exp(f_0 + t * (f_T - f_0))
move_chance = move_chance[:, None]
else:
sigma, _ = self.noise(t)
time_conditioning = sigma[:, None]
move_chance = 1 - torch.exp(-sigma[:, None])
xt = self._q_xt(x0, move_chance)
logits = self.forward(xt, time_conditioning, attention_mask=attention_mask)
if hasattr(self.config.data, 'label_col'):
if f"{self.config.data.label_col}_threshold" in batch:
y = batch[f"{self.config.data.label_col}_threshold"]
else:
y = batch[self.config.data.label_col]
else:
y = batch['label']
if (not self.is_eval_classifier
and getattr(self.config.training, 'use_label_smoothing', False)):
# Interpolate between one-hot and uniform distribution
labels = (torch.nn.functional.one_hot(y, self.config.data.num_classes) * (1 - t)[..., None] +
(1 / self.config.data.num_classes) * t[..., None])
else:
labels = y.view(-1)
if getattr(self.config, 'is_fudge_classifier', False):
expanded_y = y.unsqueeze(1).expand(-1, logits.shape[1]) # batch x seq
logits = logits.view(-1, self.config.data.num_classes)[attention_mask.flatten()==1, ...]
y = expanded_y.flatten().long()[attention_mask.flatten()==1]
loss = torch.nn.functional.cross_entropy(
logits,
y,
ignore_index=-100,
reduction='mean')
else:
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)),
labels,
ignore_index=-100,
reduction='mean')
if prefix == 'train':
self.train_metrics.update(logits, y)
metrics = self.train_metrics
elif prefix == 'val':
self.valid_metrics.update(logits, y)
metrics = self.valid_metrics
elif prefix == 'test':
self.test_metrics.update(logits, y)
metrics = self.test_metrics
else:
raise ValueError(f'Invalid prefix: {prefix}')
self.log_dict(metrics,
on_step=False,
on_epoch=True,
sync_dist=True)
return loss
def _sample_t(self, n):
_eps_t = torch.rand(n, device=self.device)
if self.antithetic_sampling:
offset = torch.arange(n, device=self.device) / n
_eps_t = (_eps_t / n + offset) % 1
t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
if self.importance_sampling:
return self.noise.importance_sampling_transformation(
t)
return t
def _process_sigma(self, sigma):
if sigma.ndim > 1:
sigma = sigma.squeeze(-1)
if not self.time_conditioning:
sigma = torch.zeros_like(sigma)
assert sigma.ndim == 1, sigma.shape
return sigma
|