import pandas as pd from torch.utils.data import Dataset, DataLoader from utils.esm_utils import get_latents, load_esm2_model class ProteinDataset(Dataset): def __init__(self, csv_file, tokenizer, model): self.data = pd.read_csv(csv_file) self.tokenizer = tokenizer self.model = model def __len__(self): return len(self.data) def __getitem__(self, idx): sequence = self.data.iloc[idx]['sequence'] latents = get_latents(self.model, self.tokenizer, sequence) return latents def get_dataloaders(config): tokenizer, model = load_esm2_model(config.model_name) train_dataset = ProteinDataset(config.data_path + "train.csv", tokenizer, model) val_dataset = ProteinDataset(config.data_path + "val.csv", tokenizer, model) test_dataset = ProteinDataset(config.data_path + "test.csv", tokenizer, model) train_loader = DataLoader(train_dataset, batch_size=config.training["batch_size"], shuffle=True) val_loader = DataLoader(val_dataset, batch_size=config.training["batch_size"], shuffle=False) test_loader = DataLoader(test_dataset, batch_size=config.training["batch_size"], shuffle=False) return train_loader, val_loader, test_loader