ChasingMercer commited on
Commit
e9efa32
·
1 Parent(s): aae726f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -6
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9359067734887109
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,7 +31,7 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.1815
35
  - Accuracy: 0.9359
36
 
37
  ## Model description
@@ -60,15 +60,18 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 0.3277 | 1.0 | 171 | 0.2930 | 0.9002 |
70
- | 0.2401 | 2.0 | 342 | 0.1914 | 0.9374 |
71
- | 0.1036 | 3.0 | 513 | 0.1815 | 0.9359 |
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.9358600583090378
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.2184
35
  - Accuracy: 0.9359
36
 
37
  ## Model description
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 6
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.3368 | 1.0 | 171 | 0.2780 | 0.9009 |
70
+ | 0.2129 | 2.0 | 342 | 0.2333 | 0.9300 |
71
+ | 0.1827 | 3.0 | 513 | 0.2440 | 0.9213 |
72
+ | 0.1475 | 4.0 | 684 | 0.2306 | 0.9315 |
73
+ | 0.1284 | 5.0 | 855 | 0.2192 | 0.9359 |
74
+ | 0.0526 | 6.0 | 1026 | 0.2184 | 0.9359 |
75
 
76
 
77
  ### Framework versions