ChasingMercer commited on
Commit
a0cdeff
1 Parent(s): 2d1218f
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: weather-base
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: dataset
19
+ split: train
20
+ args: dataset
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9358600583090378
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # weather-base
31
+
32
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2184
35
+ - Accuracy: 0.9359
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 6
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.3368 | 1.0 | 171 | 0.2780 | 0.9009 |
70
+ | 0.2129 | 2.0 | 342 | 0.2333 | 0.9300 |
71
+ | 0.1827 | 3.0 | 513 | 0.2440 | 0.9213 |
72
+ | 0.1475 | 4.0 | 684 | 0.2306 | 0.9315 |
73
+ | 0.1284 | 5.0 | 855 | 0.2192 | 0.9359 |
74
+ | 0.0526 | 6.0 | 1026 | 0.2184 | 0.9359 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.26.1
80
+ - Pytorch 1.13.1+cu116
81
+ - Datasets 2.10.1
82
+ - Tokenizers 0.13.2
.ipynb_checkpoints/all_results-checkpoint.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 6.0,
3
+ "total_flos": 2.549919337377528e+18,
4
+ "train_loss": 0.2920494159759834,
5
+ "train_runtime": 2402.1234,
6
+ "train_samples_per_second": 13.71,
7
+ "train_steps_per_second": 0.427
8
+ }
runs/Mar07_14-11-04_pop-os/events.out.tfevents.1678201546.pop-os.7668.7 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ef255410e59c92ed97d5600b3907239a62a618150498493bde51d142ba16a51
3
+ size 346