--- license: creativeml-openrail-m base_model: "stabilityai/stable-diffusion-xl-base-1.0" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true --- # xhsgirl_v0.2SDXL This is a LoRA derived from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). The main validation prompt used during training was: ``` a woman side view upper body, hands clasped near mouth, strapless dress, long wavy hair, black car hood, forest background ``` ## Validation settings - CFG: `5.5` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `None` - Seed: `42` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 2999 - Training steps: 3000 - Learning rate: 8e-06 - Effective batch size: 16 - Micro-batch size: 4 - Gradient accumulation steps: 4 - Number of GPUs: 1 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Not used - LoRA Rank: 16 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### xhsgirl_v0.2sdxl - Repeats: 0 - Total number of images: 16 - Total number of aspect buckets: 1 - Resolution: 1024 px - Cropped: True - Crop style: center - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'stabilityai/stable-diffusion-xl-base-1.0' adapter_id = 'ChandlerGIS/xhsgirl_v0.2SDXL' pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.load_lora_weights(adapter_id) prompt = "a woman side view upper body, hands clasped near mouth, strapless dress, long wavy hair, black car hood, forest background" negative_prompt = 'blurry, cropped, ugly' pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=5.5, guidance_rescale=0.0, ).images[0] image.save("output.png", format="PNG") ```