--- base_model: - kubernetes-bad/chargen-v2 - NeverSleep/Noromaid-7B-0.4-DPO - mlabonne/NeuralHermes-2.5-Mistral-7B - Weyaxi/Einstein-v4-7B - Severian/Einstein-IKM-v1-7B-LoRa library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [kubernetes-bad/chargen-v2](https://huggingface.co/kubernetes-bad/chargen-v2) as a base. ### Models Merged The following models were included in the merge: * [NeverSleep/Noromaid-7B-0.4-DPO](https://huggingface.co/NeverSleep/Noromaid-7B-0.4-DPO) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) * [Weyaxi/Einstein-v4-7B](https://huggingface.co/Weyaxi/Einstein-v4-7B) + [Severian/Einstein-IKM-v1-7B-LoRa](https://huggingface.co/Severian/Einstein-IKM-v1-7B-LoRa) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: kubernetes-bad/chargen-v2 parameters: density: 1 weight: 1 - model: NeverSleep/Noromaid-7B-0.4-DPO parameters: density: 0.65 weight: 0.2 - model: Weyaxi/Einstein-v4-7B+Severian/Einstein-IKM-v1-7B-LoRa parameters: density: [0.6, 0.5, 0.4, 0.5, 0.6] weight: 0.15 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: density: [0.4, 0.5, 0.6, 0.5, 0.4] weight: 0.15 merge_method: ties base_model: kubernetes-bad/chargen-v2 parameters: normalize: true dtype: bfloat16 ```