from transformers import pipeline import openai # Initialize the exploit detection model exploit_detector = pipeline("text-classification", model="Canstralian/CySec_Known_Exploit_Analyzer") # Initialize OpenAI API (or Replit's API) openai.api_key = "your-openai-api-key" # Replace with your actual API key def detect_and_remediate(exploit_input): """ Detects an exploit in the input and generates remediation code if an exploit is found. Args: exploit_input (str): The code or log input that might contain an exploit. Returns: str: The remediation code or a message indicating no exploit was detected. """ # Step 1: Detect the exploit exploit_result = exploit_detector(exploit_input) if exploit_result[0]['label'] == "EXPLOIT_DETECTED": print("Exploit detected!") # Step 2: Generate remediation code remediation_prompt = f"Generate Python code to fix the following exploit: {exploit_input}" remediation_response = openai.Completion.create( engine="code-davinci-002", # Or Replit's equivalent code model prompt=remediation_prompt, max_tokens=150 ) # Extracting the generated remediation code remediation_code = remediation_response.choices[0].text.strip() return remediation_code else: return "No exploit detected." if __name__ == "__main__": # Example input: a piece of code or log indicating a vulnerability input_code = "Vulnerable code snippet here" remediation = detect_and_remediate(input_code) print("Remediation Code:", remediation)