Canstralian commited on
Commit
f4c858d
·
verified ·
1 Parent(s): d189edd

Create train_and_save_model.py

Browse files
Files changed (1) hide show
  1. train_and_save_model.py +89 -0
train_and_save_model.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ from torch.utils.data import DataLoader, Dataset
5
+ import json
6
+ import os
7
+
8
+ # Step 1: Define Your Dataset Class
9
+ class CustomDataset(Dataset):
10
+ def __init__(self, texts, labels):
11
+ self.texts = texts
12
+ self.labels = labels
13
+
14
+ def __len__(self):
15
+ return len(self.texts)
16
+
17
+ def __getitem__(self, idx):
18
+ return self.texts[idx], self.labels[idx]
19
+
20
+ # Step 2: Define Your Model Class
21
+ class LSTMModel(nn.Module):
22
+ def __init__(self, input_size, hidden_size, output_size):
23
+ super(LSTMModel, self).__init__()
24
+ self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
25
+ self.fc = nn.Linear(hidden_size, output_size)
26
+
27
+ def forward(self, x):
28
+ lstm_out, _ = self.lstm(x)
29
+ out = self.fc(lstm_out[:, -1, :]) # Get the last time step output
30
+ return out
31
+
32
+ # Step 3: Initialize Hyperparameters and Model
33
+ input_size = 100 # Example input size (e.g., embedding size)
34
+ hidden_size = 64 # Number of LSTM units
35
+ output_size = 10 # Number of output classes
36
+ num_epochs = 5
37
+ learning_rate = 0.001
38
+
39
+ # Initialize the model
40
+ model = LSTMModel(input_size, hidden_size, output_size)
41
+
42
+ # Step 4: Set Up Loss and Optimizer
43
+ criterion = nn.CrossEntropyLoss()
44
+ optimizer = optim.Adam(model.parameters(), lr=learning_rate)
45
+
46
+ # Step 5: Sample Data (You would replace this with your actual data)
47
+ # Here, we create random data for demonstration purposes
48
+ texts = torch.randn(100, 10, input_size) # 100 samples, sequence length of 10
49
+ labels = torch.randint(0, output_size, (100,)) # 100 random labels
50
+
51
+ # Create a DataLoader
52
+ dataset = CustomDataset(texts, labels)
53
+ data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
54
+
55
+ # Step 6: Training Loop
56
+ for epoch in range(num_epochs):
57
+ for inputs, targets in data_loader:
58
+ # Forward pass
59
+ outputs = model(inputs)
60
+ loss = criterion(outputs, targets)
61
+
62
+ # Backward pass and optimization
63
+ optimizer.zero_grad()
64
+ loss.backward()
65
+ optimizer.step()
66
+
67
+ print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
68
+
69
+ # Step 7: Save the Model
70
+ model_save_path = "path/to/save/model_directory" # Change this to your desired path
71
+ os.makedirs(model_save_path, exist_ok=True) # Create the directory if it doesn't exist
72
+
73
+ # Save the model weights
74
+ torch.save(model.state_dict(), os.path.join(model_save_path, "pytorch_model.bin"))
75
+
76
+ # Step 8: Create and Save the Configuration File
77
+ config = {
78
+ "input_size": input_size,
79
+ "hidden_size": hidden_size,
80
+ "output_size": output_size,
81
+ "num_layers": 1, # Add more parameters as needed
82
+ "dropout": 0.2
83
+ }
84
+
85
+ # Save the configuration to a JSON file
86
+ with open(os.path.join(model_save_path, "config.json"), "w") as f:
87
+ json.dump(config, f)
88
+
89
+ print("Model and configuration saved successfully!")