Canstralian
commited on
Create train_and_save_model.py
Browse files- train_and_save_model.py +89 -0
train_and_save_model.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.optim as optim
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Step 1: Define Your Dataset Class
|
9 |
+
class CustomDataset(Dataset):
|
10 |
+
def __init__(self, texts, labels):
|
11 |
+
self.texts = texts
|
12 |
+
self.labels = labels
|
13 |
+
|
14 |
+
def __len__(self):
|
15 |
+
return len(self.texts)
|
16 |
+
|
17 |
+
def __getitem__(self, idx):
|
18 |
+
return self.texts[idx], self.labels[idx]
|
19 |
+
|
20 |
+
# Step 2: Define Your Model Class
|
21 |
+
class LSTMModel(nn.Module):
|
22 |
+
def __init__(self, input_size, hidden_size, output_size):
|
23 |
+
super(LSTMModel, self).__init__()
|
24 |
+
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
|
25 |
+
self.fc = nn.Linear(hidden_size, output_size)
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
lstm_out, _ = self.lstm(x)
|
29 |
+
out = self.fc(lstm_out[:, -1, :]) # Get the last time step output
|
30 |
+
return out
|
31 |
+
|
32 |
+
# Step 3: Initialize Hyperparameters and Model
|
33 |
+
input_size = 100 # Example input size (e.g., embedding size)
|
34 |
+
hidden_size = 64 # Number of LSTM units
|
35 |
+
output_size = 10 # Number of output classes
|
36 |
+
num_epochs = 5
|
37 |
+
learning_rate = 0.001
|
38 |
+
|
39 |
+
# Initialize the model
|
40 |
+
model = LSTMModel(input_size, hidden_size, output_size)
|
41 |
+
|
42 |
+
# Step 4: Set Up Loss and Optimizer
|
43 |
+
criterion = nn.CrossEntropyLoss()
|
44 |
+
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
45 |
+
|
46 |
+
# Step 5: Sample Data (You would replace this with your actual data)
|
47 |
+
# Here, we create random data for demonstration purposes
|
48 |
+
texts = torch.randn(100, 10, input_size) # 100 samples, sequence length of 10
|
49 |
+
labels = torch.randint(0, output_size, (100,)) # 100 random labels
|
50 |
+
|
51 |
+
# Create a DataLoader
|
52 |
+
dataset = CustomDataset(texts, labels)
|
53 |
+
data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
54 |
+
|
55 |
+
# Step 6: Training Loop
|
56 |
+
for epoch in range(num_epochs):
|
57 |
+
for inputs, targets in data_loader:
|
58 |
+
# Forward pass
|
59 |
+
outputs = model(inputs)
|
60 |
+
loss = criterion(outputs, targets)
|
61 |
+
|
62 |
+
# Backward pass and optimization
|
63 |
+
optimizer.zero_grad()
|
64 |
+
loss.backward()
|
65 |
+
optimizer.step()
|
66 |
+
|
67 |
+
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
|
68 |
+
|
69 |
+
# Step 7: Save the Model
|
70 |
+
model_save_path = "path/to/save/model_directory" # Change this to your desired path
|
71 |
+
os.makedirs(model_save_path, exist_ok=True) # Create the directory if it doesn't exist
|
72 |
+
|
73 |
+
# Save the model weights
|
74 |
+
torch.save(model.state_dict(), os.path.join(model_save_path, "pytorch_model.bin"))
|
75 |
+
|
76 |
+
# Step 8: Create and Save the Configuration File
|
77 |
+
config = {
|
78 |
+
"input_size": input_size,
|
79 |
+
"hidden_size": hidden_size,
|
80 |
+
"output_size": output_size,
|
81 |
+
"num_layers": 1, # Add more parameters as needed
|
82 |
+
"dropout": 0.2
|
83 |
+
}
|
84 |
+
|
85 |
+
# Save the configuration to a JSON file
|
86 |
+
with open(os.path.join(model_save_path, "config.json"), "w") as f:
|
87 |
+
json.dump(config, f)
|
88 |
+
|
89 |
+
print("Model and configuration saved successfully!")
|