--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-32B datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture - cognitivecomputations/dolphin-2.9.3 tags: - generated_from_trainer model-index: - name: EVA-Qwen2.5-32B-SFFT-v0.1 results: [] --- # This repo contains the copy of the original quantized to FP8. Original: [EVA-UNIT-01/EVA-Qwen2.5-32B-v0.1](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.1) # EVA Qwen2.5-32B v0.1

A RP/storywriting specialist model, full-parameter finetune of Qwen2.5-32B on mixture of synthetic and natural data.
It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.

Version notes for 0.1: Additional round of cleaning for the datasets, new subsets of 4o-WritingPrompts and Charcards, picking the most diverse samples from them, plus added a small subset of SystemChat2.0 to improve instruction following and sliglthy increased sequence length. Additionally, fixed the training config mistake from 32B 0.0, layernorm layers stay frozen this time. Unfreezing them caused positivity bias to appear in 32B 0.0 for some reason.

Prompt format is ChatML.


Recommended sampler values:

Recommended SillyTavern presets (via CalamitousFelicitousness):

- [Context](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Context.json) - [Instruct and System Prompt](https://huggingface.co/EVA-UNIT-01/EVA-Yi-1.5-9B-32K-V1/blob/main/%5BChatML%5D%20Roleplay-v1.9%20Instruct.json)


Training data:

Training time and hardware:


Model was trained by Kearm and Auri.

Special thanks:

[Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Qwen/Qwen2.5-32B load_in_8bit: false load_in_4bit: false strict: false plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true # plugins: # - axolotl.integrations.spectrum.SpectrumPlugin # spectrum_top_fraction: 0.5 # # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror # spectrum_model_name: Qwen/Qwen2.5-32B datasets: - path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl type: sharegpt - path: datasets/opus-instruct-22k-no_refusals-filtered.jsonl type: sharegpt - path: datasets/Celeste_Filtered.jsonl type: sharegpt - path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt.jsonl type: sharegpt - path: datasets/deduped_SynthRP-Gens_processed_09-25-2024-ShareGPT_converted_cleaned.jsonl type: sharegpt - path: datasets/Gryphe-4o-WP-filtered-sharegpt.jsonl type: sharegpt - path: datasets/deduped_not_samantha_norefusals.jsonl type: sharegpt - path: datasets/SystemChat_subset_filtered_sharegpt.jsonl type: sharegpt chat_template: chatml shuffle_merged_datasets: true val_set_size: 0.001 output_dir: ./EVA-Qwen2.5-32B-SFFT-v0.1 sequence_len: 9216 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true # adapter: qlora # lora_model_dir: # lora_r: 64 # lora_alpha: 128 # lora_dropout: 0.05 # lora_target_linear: true # peft_use_dora: true unfrozen_parameters: - ^lm_head.weight$ - ^model.embed_tokens.weight$ # mlp.down_proj layers - model.layers.63.mlp.down_proj - model.layers.49.mlp.down_proj - model.layers.48.mlp.down_proj - model.layers.45.mlp.down_proj - model.layers.44.mlp.down_proj - model.layers.47.mlp.down_proj - model.layers.46.mlp.down_proj - model.layers.43.mlp.down_proj - model.layers.8.mlp.down_proj - model.layers.11.mlp.down_proj - model.layers.19.mlp.down_proj - model.layers.35.mlp.down_proj - model.layers.20.mlp.down_proj - model.layers.52.mlp.down_proj - model.layers.39.mlp.down_proj - model.layers.62.mlp.down_proj - model.layers.50.mlp.down_proj - model.layers.29.mlp.down_proj - model.layers.16.mlp.down_proj - model.layers.28.mlp.down_proj - model.layers.53.mlp.down_proj - model.layers.30.mlp.down_proj - model.layers.31.mlp.down_proj - model.layers.32.mlp.down_proj - model.layers.7.mlp.down_proj - model.layers.36.mlp.down_proj - model.layers.12.mlp.down_proj - model.layers.18.mlp.down_proj - model.layers.37.mlp.down_proj - model.layers.38.mlp.down_proj - model.layers.14.mlp.down_proj - model.layers.13.mlp.down_proj # mlp.gate_proj layers - model.layers.43.mlp.gate_proj - model.layers.61.mlp.gate_proj - model.layers.60.mlp.gate_proj - model.layers.44.mlp.gate_proj - model.layers.62.mlp.gate_proj - model.layers.28.mlp.gate_proj - model.layers.29.mlp.gate_proj - model.layers.45.mlp.gate_proj - model.layers.37.mlp.gate_proj - model.layers.35.mlp.gate_proj - model.layers.59.mlp.gate_proj - model.layers.36.mlp.gate_proj - model.layers.30.mlp.gate_proj - model.layers.48.mlp.gate_proj - model.layers.38.mlp.gate_proj - model.layers.27.mlp.gate_proj - model.layers.31.mlp.gate_proj - model.layers.34.mlp.gate_proj - model.layers.58.mlp.gate_proj - model.layers.33.mlp.gate_proj - model.layers.39.mlp.gate_proj - model.layers.26.mlp.gate_proj - model.layers.32.mlp.gate_proj - model.layers.46.mlp.gate_proj - model.layers.42.mlp.gate_proj - model.layers.49.mlp.gate_proj - model.layers.57.mlp.gate_proj - model.layers.50.mlp.gate_proj - model.layers.47.mlp.gate_proj - model.layers.56.mlp.gate_proj - model.layers.63.mlp.gate_proj - model.layers.55.mlp.gate_proj # mlp.up_proj layers - model.layers.61.mlp.up_proj - model.layers.60.mlp.up_proj - model.layers.32.mlp.up_proj - model.layers.59.mlp.up_proj - model.layers.58.mlp.up_proj - model.layers.57.mlp.up_proj - model.layers.44.mlp.up_proj - model.layers.28.mlp.up_proj - model.layers.35.mlp.up_proj - model.layers.36.mlp.up_proj - model.layers.29.mlp.up_proj - model.layers.31.mlp.up_proj - model.layers.34.mlp.up_proj - model.layers.55.mlp.up_proj - model.layers.49.mlp.up_proj - model.layers.30.mlp.up_proj - model.layers.53.mlp.up_proj - model.layers.43.mlp.up_proj - model.layers.56.mlp.up_proj - model.layers.33.mlp.up_proj - model.layers.54.mlp.up_proj - model.layers.62.mlp.up_proj - model.layers.27.mlp.up_proj - model.layers.51.mlp.up_proj - model.layers.52.mlp.up_proj - model.layers.37.mlp.up_proj - model.layers.45.mlp.up_proj - model.layers.26.mlp.up_proj - model.layers.42.mlp.up_proj - model.layers.50.mlp.up_proj - model.layers.48.mlp.up_proj - model.layers.39.mlp.up_proj # self_attn.k_proj layers - model.layers.63.self_attn.k_proj - model.layers.55.self_attn.k_proj - model.layers.60.self_attn.k_proj - model.layers.7.self_attn.k_proj - model.layers.12.self_attn.k_proj - model.layers.13.self_attn.k_proj - model.layers.57.self_attn.k_proj - model.layers.29.self_attn.k_proj - model.layers.14.self_attn.k_proj - model.layers.51.self_attn.k_proj - model.layers.53.self_attn.k_proj - model.layers.54.self_attn.k_proj - model.layers.22.self_attn.k_proj - model.layers.61.self_attn.k_proj - model.layers.18.self_attn.k_proj - model.layers.30.self_attn.k_proj - model.layers.9.self_attn.k_proj - model.layers.24.self_attn.k_proj - model.layers.23.self_attn.k_proj - model.layers.25.self_attn.k_proj - model.layers.10.self_attn.k_proj - model.layers.58.self_attn.k_proj - model.layers.56.self_attn.k_proj - model.layers.15.self_attn.k_proj - model.layers.32.self_attn.k_proj - model.layers.28.self_attn.k_proj - model.layers.8.self_attn.k_proj - model.layers.59.self_attn.k_proj - model.layers.11.self_attn.k_proj - model.layers.48.self_attn.k_proj - model.layers.16.self_attn.k_proj - model.layers.50.self_attn.k_proj # self_attn.o_proj layers - model.layers.15.self_attn.o_proj - model.layers.23.self_attn.o_proj - model.layers.31.self_attn.o_proj - model.layers.30.self_attn.o_proj - model.layers.18.self_attn.o_proj - model.layers.24.self_attn.o_proj - model.layers.17.self_attn.o_proj - model.layers.28.self_attn.o_proj - model.layers.34.self_attn.o_proj - model.layers.33.self_attn.o_proj - model.layers.25.self_attn.o_proj - model.layers.12.self_attn.o_proj - model.layers.14.self_attn.o_proj - model.layers.29.self_attn.o_proj - model.layers.16.self_attn.o_proj - model.layers.26.self_attn.o_proj - model.layers.22.self_attn.o_proj - model.layers.27.self_attn.o_proj - model.layers.35.self_attn.o_proj - model.layers.20.self_attn.o_proj - model.layers.13.self_attn.o_proj - model.layers.36.self_attn.o_proj - model.layers.19.self_attn.o_proj - model.layers.37.self_attn.o_proj - model.layers.21.self_attn.o_proj - model.layers.11.self_attn.o_proj - model.layers.54.self_attn.o_proj - model.layers.5.self_attn.o_proj - model.layers.38.self_attn.o_proj - model.layers.6.self_attn.o_proj - model.layers.8.self_attn.o_proj - model.layers.9.self_attn.o_proj # self_attn.q_proj layers - model.layers.1.self_attn.q_proj - model.layers.2.self_attn.q_proj - model.layers.3.self_attn.q_proj - model.layers.45.self_attn.q_proj - model.layers.54.self_attn.q_proj - model.layers.35.self_attn.q_proj - model.layers.48.self_attn.q_proj - model.layers.61.self_attn.q_proj - model.layers.52.self_attn.q_proj - model.layers.50.self_attn.q_proj - model.layers.60.self_attn.q_proj - model.layers.56.self_attn.q_proj - model.layers.58.self_attn.q_proj - model.layers.42.self_attn.q_proj - model.layers.59.self_attn.q_proj - model.layers.44.self_attn.q_proj - model.layers.55.self_attn.q_proj - model.layers.57.self_attn.q_proj - model.layers.41.self_attn.q_proj - model.layers.36.self_attn.q_proj - model.layers.39.self_attn.q_proj - model.layers.4.self_attn.q_proj - model.layers.43.self_attn.q_proj - model.layers.34.self_attn.q_proj - model.layers.46.self_attn.q_proj - model.layers.49.self_attn.q_proj - model.layers.40.self_attn.q_proj - model.layers.25.self_attn.q_proj - model.layers.51.self_attn.q_proj - model.layers.17.self_attn.q_proj - model.layers.37.self_attn.q_proj - model.layers.53.self_attn.q_proj # self_attn.v_proj layers - model.layers.55.self_attn.v_proj - model.layers.31.self_attn.v_proj - model.layers.47.self_attn.v_proj - model.layers.45.self_attn.v_proj - model.layers.49.self_attn.v_proj - model.layers.48.self_attn.v_proj - model.layers.15.self_attn.v_proj - model.layers.30.self_attn.v_proj - model.layers.7.self_attn.v_proj - model.layers.44.self_attn.v_proj - model.layers.29.self_attn.v_proj - model.layers.51.self_attn.v_proj - model.layers.50.self_attn.v_proj - model.layers.14.self_attn.v_proj - model.layers.54.self_attn.v_proj - model.layers.32.self_attn.v_proj - model.layers.43.self_attn.v_proj - model.layers.10.self_attn.v_proj - model.layers.46.self_attn.v_proj - model.layers.38.self_attn.v_proj - model.layers.57.self_attn.v_proj - model.layers.22.self_attn.v_proj - model.layers.39.self_attn.v_proj - model.layers.6.self_attn.v_proj - model.layers.23.self_attn.v_proj - model.layers.58.self_attn.v_proj - model.layers.53.self_attn.v_proj - model.layers.40.self_attn.v_proj - model.layers.24.self_attn.v_proj - model.layers.9.self_attn.v_proj - model.layers.25.self_attn.v_proj - model.layers.5.self_attn.v_proj wandb_project: EVA-Qwen2.5-32B-SFFT-v0.1 wandb_entity: wandb_watch: wandb_name: Unit-01 wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00005 max_grad_norm: 3 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: "unsloth" # gradient_checkpointing_kwargs: # use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 2 save_safetensors: true hub_model_id: hub_strategy: debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.1 # fsdp: # - full_shard # - auto_wrap # fsdp_config: # fsdp_limit_all_gathers: true # fsdp_sync_module_states: false # fsdp_offload_params: true # fsdp_cpu_ram_efficient_loading: true # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer # fsdp_activation_checkpointing: true # fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT # fsdp_sharding_strategy: FULL_SHARD # fsdp_forward_prefetch: false # Added # fsdp_backward_prefetch: "BACKWARD_PRE" # Added # fsdp_backward_prefetch_limit: 1 # Added # fsdp_mixed_precision: BF16 # Added ```