# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import warnings from typing import List, Optional, Tuple, Union import torch.utils.checkpoint import transformers from torch import nn from torch.nn import CrossEntropyLoss from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, Qwen2ForCausalLM) from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from transformers import WhisperConfig, WhisperModel, WhisperProcessor from .configuration_internvl_chat import InternVLChatConfig from .conversation import get_conv_template from .modeling_intern_vit import InternVisionModel, has_flash_attn logger = logging.get_logger(__name__) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) class InternVLChatModel(PreTrainedModel): config_class = InternVLChatConfig main_input_name = 'pixel_values' base_model_prefix = 'language_model' _supports_flash_attn_2 = True _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer'] def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version use_flash_attn = use_flash_attn if has_flash_attn else False config.vision_config.use_flash_attn = True if use_flash_attn else False config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': self.language_model = Qwen2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') # whisper model whisper_config = WhisperConfig(**self.config.audio_config) self.audio_model = WhisperModel.from_pretrained( "/data/nvme5n1p1/vladimir_workspace/audio_internvl/models/whisper-large-v3-turbo", config=whisper_config, torch_dtype=torch.float16, low_cpu_mem_usage=True, ) # Remove decoder since we only need the encoder del self.audio_model.decoder # Initialize audio processor self.audio_processor = WhisperProcessor.from_pretrained("/data/nvme5n1p1/vladimir_workspace/audio_internvl/models/whisper-large-v3-turbo") # Get hidden sizes vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size whisper_hidden_size = self.audio_model.config.d_model self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) # Audio projection self.mlp2 = nn.Sequential( nn.LayerNorm(whisper_hidden_size), nn.Linear(whisper_hidden_size, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) self.audio_context_token_id = None self.img_context_token_id = None self.conv_template = get_conv_template(self.template) self.system_message = self.conv_template.system_message def process_audio_feature(self, audio_values, audio_flags): print("\n=== Processing Audio Features ===") print(f"Input audio shape: {audio_values.shape}") print(f"Audio flags shape: {audio_flags.shape}") # Ensure float32 for audio input audio_values = audio_values.to(torch.float32) print(f"Audio values min/max: {audio_values.min():.3f}/{audio_values.max():.3f}") # Convert audio to features if len(audio_values.shape) == 2: audio_list = [arr.cpu().numpy() for arr in audio_values] else: audio_list = [audio_values.cpu().numpy()] processed_audio = self.audio_processor( audio_list, sampling_rate=16000, return_tensors="pt" ) audio_features = processed_audio["input_features"].to(self.device) print(f"Processed audio features shape: {audio_features.shape}") # Convert to float32 before encoder audio_features = audio_features.to(torch.float32) # Get encoder outputs with torch.cuda.amp.autocast(enabled=False): # Disable mixed precision audio_outputs = self.audio_model.encoder(audio_features) audio_embeds = audio_outputs.last_hidden_state print(f"Whisper encoder output shape: {audio_embeds.shape}") audio_embeds = audio_embeds.to(torch.float32) # Ensure float32 print(f"Encoder output min/max: {audio_embeds.min():.3f}/{audio_embeds.max():.3f}") # Reshape to match the expected number of tokens (300) B, T, C = audio_embeds.shape target_length = 300 # Use adaptive pooling to get the desired length adaptive_pool = torch.nn.AdaptiveAvgPool1d(target_length) audio_embeds = audio_embeds.transpose(1, 2) # [B, C, T] audio_embeds = adaptive_pool(audio_embeds) # [B, C, 300] audio_embeds = audio_embeds.transpose(1, 2) # [B, 300, C] print(f"After pooling shape: {audio_embeds.shape}") # More robust normalization before MLP2 audio_embeds = audio_embeds.float() # First normalize per-token with more stable computation mean = audio_embeds.mean(dim=-1, keepdim=True) std = audio_embeds.std(dim=-1, keepdim=True) # Add larger epsilon and clip std to avoid division by zero std = torch.clamp(std, min=1e-6) audio_embeds = (audio_embeds - mean) / std # Clip extreme values more conservatively audio_embeds = torch.clamp(audio_embeds, -2.0, 2.0) # Apply LayerNorm with larger eps layer_norm = nn.LayerNorm(audio_embeds.shape[-1], eps=1e-4).to(audio_embeds.device) audio_embeds = layer_norm(audio_embeds) print(f"Pre-MLP2 stats - min: {audio_embeds.min():.3f}, max: {audio_embeds.max():.3f}") # Project to LLM dimension with gradient scaling and additional checks with torch.cuda.amp.autocast(enabled=False): # Pre-normalize and scale more carefully mean = audio_embeds.mean(dim=-1, keepdim=True) std = audio_embeds.std(dim=-1, keepdim=True) std = torch.clamp(std, min=1e-6) audio_embeds = (audio_embeds - mean) / std # Scale down more conservatively before MLP2 audio_embeds = audio_embeds * 0.05 # Reduced from 0.1 # Apply MLP2 with gradient scaling audio_embeds = self.mlp2(audio_embeds) if torch.isnan(audio_embeds).any() or torch.isinf(audio_embeds).any(): print("WARNING: NaN/Inf detected after MLP2! Using robust recovery...") audio_embeds = torch.nan_to_num(audio_embeds, nan=0.0, posinf=1.0, neginf=-1.0) # Normalize with small noise mean = audio_embeds.mean(dim=-1, keepdim=True) std = audio_embeds.std(dim=-1, keepdim=True) std = torch.clamp(std, min=1e-6) audio_embeds = (audio_embeds - mean) / std audio_embeds = audio_embeds + torch.randn_like(audio_embeds) * 0.0001 # Final scaling to match LLM exactly llm_std = 0.009 audio_embeds = audio_embeds * llm_std return audio_embeds def forward( self, pixel_values: torch.FloatTensor = None, audio_values: torch.FloatTensor = None, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, audio_flags: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) # Process images if present if pixel_values is not None: image_flags = image_flags.squeeze(-1) vit_embeds = self.extract_feature(pixel_values) vit_embeds = vit_embeds[image_flags == 1] vit_batch_size = pixel_values.shape[0] if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') image_selected = (input_ids == self.img_context_token_id) try: input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) n_token = image_selected.sum() input_embeds[image_selected] = input_embeds[image_selected] * 0.0 + vit_embeds[:n_token] # Process audio if present if audio_values is not None and audio_flags is not None: audio_flags = audio_flags.squeeze(-1) audio_embeds = self.process_audio_feature(audio_values, audio_flags) audio_batch_size = audio_values.shape[0] if len(audio_values.shape) > 1 else 1 if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: print(f'dynamic Audio batch size: {audio_batch_size}, audio per sample: {audio_batch_size / B}, dynamic token length: {N}') audio_selected = (input_ids == self.audio_context_token_id) try: input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + audio_embeds.reshape(-1, C) except Exception as e: audio_embeds = audio_embeds.reshape(-1, C) n_token = audio_selected.sum() input_embeds[audio_selected] = input_embeds[audio_selected] * 0.0 + audio_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if self.ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values): if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True).hidden_states[self.select_layer] vit_embeds = vit_embeds[:, 1:, :] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds) return vit_embeds def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, history=None, return_history=False, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', verbose=False, image_counts=None): if history is not None or return_history: print('Now multi-turn chat is not supported in batch_chat.') raise NotImplementedError if image_counts is not None: num_patches_list = image_counts print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') queries = [] for idx, num_patches in enumerate(num_patches_list): question = questions[idx] if pixel_values is not None and '' not in question: question = '\n' + question template = get_conv_template(self.template) template.system_message = self.system_message template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) queries.append(query) tokenizer.padding_side = 'left' model_inputs = tokenizer(queries, return_tensors='pt', padding=True) input_ids = model_inputs['input_ids'].to(self.device) attention_mask = model_inputs['attention_mask'].to(self.device) eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, **generation_config ) responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) responses = [response.split(template.sep.strip())[0].strip() for response in responses] return responses def chat(self, tokenizer, pixel_values=None, question=None, generation_config=None, history=None, return_history=False, num_patches_list=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', AUDIO_START_TOKEN='', AUDIO_CONTEXT_TOKEN='', verbose=False, **kwargs): # Add **kwargs to catch extra arguments """Chat function that handles both text-only and multimodal inputs""" print("=== Starting Chat Process ===") print(f"Question: {question}") print(f"Input types - Pixel values: {type(pixel_values)}, Audio values: {type(kwargs.get('audio_values'))}") # Basic input validation if question is None: raise ValueError("Question cannot be None") if not isinstance(question, str): raise ValueError(f"Question must be string, got {type(question)}") audio_values = kwargs.get('audio_values', None) # Handle image prompt if history is None and pixel_values is not None and '' not in question: question = '\n' + question print("Added image token to question") # Handle audio prompt if history is None and audio_values is not None and '