--- library_name: transformers license: mit base_model: almanach/camembertav2-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: camembertav2-base-frenchNER_3entities results: [] --- # camembertav2-base-frenchNER_3entities This model is a fine-tuned version of [almanach/camembertav2-base](https://huggingface.co/almanach/camembertav2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0880 - Precision: 0.9859 - Recall: 0.9859 - F1: 0.9859 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0335 | 1.0 | 43650 | 0.0854 | 0.9833 | 0.9833 | 0.9833 | 0.9833 | | 0.0169 | 2.0 | 87300 | 0.0821 | 0.9854 | 0.9854 | 0.9854 | 0.9854 | | 0.0103 | 3.0 | 130950 | 0.0880 | 0.9859 | 0.9859 | 0.9859 | 0.9859 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1