--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-funsd_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-funsd_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an FUNSD dataset. It achieves the following results on the evaluation set: - Loss: 0.5728 - Precision: 0.8172 - Recall: 0.8664 - F1: 0.8411 - Accuracy: 0.8318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.83 | 25 | 1.3530 | 0.2996 | 0.3040 | 0.3018 | 0.5402 | | No log | 1.67 | 50 | 0.9373 | 0.6537 | 0.7193 | 0.6850 | 0.7412 | | No log | 2.5 | 75 | 0.7492 | 0.7574 | 0.8018 | 0.7790 | 0.7748 | | No log | 3.33 | 100 | 0.6587 | 0.7721 | 0.8097 | 0.7905 | 0.7900 | | No log | 4.17 | 125 | 0.6224 | 0.7808 | 0.8336 | 0.8063 | 0.8005 | | No log | 5.0 | 150 | 0.5720 | 0.7870 | 0.8445 | 0.8148 | 0.8171 | | No log | 5.83 | 175 | 0.5343 | 0.8164 | 0.8549 | 0.8352 | 0.8250 | | No log | 6.67 | 200 | 0.5856 | 0.8139 | 0.8604 | 0.8365 | 0.8268 | | No log | 7.5 | 225 | 0.5787 | 0.8166 | 0.8624 | 0.8388 | 0.8266 | | No log | 8.33 | 250 | 0.5728 | 0.8172 | 0.8664 | 0.8411 | 0.8318 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2