--- language: - en - lug tags: - llama-3.1 - gemma-2b - finetuned - english-luganda - translation - peft - qlora --- # final_model_8b_16 This model is finetuned for English-Luganda bidirectional translation tasks. It's trained using QLoRA (Quantized Low-Rank Adaptation) on the original LLaMA-3.1-8B model. ## Model Details ### Base Model Information - Base model: unsloth/Meta-Llama-3.1-8B - Model family: LLaMA-3.1-8B - Type: Base - Original model size: 8B parameters ### Training Configuration - Training method: QLoRA (4-bit quantization) - LoRA rank (r): 16 - LoRA alpha: 16 - Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj - LoRA dropout: 0 - Learning rate: 2e-5 - Batch size: 2 - Gradient accumulation steps: 4 - Max sequence length: 2048 - Weight decay: 0.01 - Training steps: 100,000 - Warmup steps: 1000 - Save interval: 10,000 steps - Optimizer: AdamW (8-bit) - LR scheduler: Cosine - Mixed precision: bf16 - Gradient checkpointing: Enabled (unsloth) ### Dataset Information - Training data: Parallel English-Luganda corpus - Data sources: - SALT dataset (salt-train-v1.4) - Extracted parallel sentences - Synthetic code-mixed data - Bidirectional translation: Trained on both English→Luganda and Luganda→English - Total training examples: Varies by direction ### Usage This model uses an instruction-based prompt format: ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Translate the following text to [target_lang] ### Input: [input text] ### Response: [translation] ``` ## Training Infrastructure - Trained using unsloth optimization library - Hardware: Single A100 GPU - Quantization: 4-bit training enabled ## Limitations - The model is specialized for English-Luganda translation - Performance may vary based on domain and complexity of text - Limited to the context length of 16 tokens ## Citation and Contact If you use this model, please cite: - Original LLaMA-3.1 model by Meta AI - QLoRA paper: Dettmers et al. (2023) - unsloth optimization library