--- base_model: UBC-NLP/MARBERT tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: marbert-fully-supervised-arabic-propaganda results: [] --- # marbert-fully-supervised-arabic-propaganda This model is a fine-tuned version of [UBC-NLP/MARBERT](https://huggingface.co/UBC-NLP/MARBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0833 - Accuracy: 0.9310 - Precision: 0.65 - Recall: 0.6341 - F1: 0.6420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0618 | 1.0 | 40 | 0.7104 | 0.9429 | 0.8696 | 0.4878 | 0.625 | | 0.0232 | 2.0 | 80 | 0.6505 | 0.9357 | 0.675 | 0.6585 | 0.6667 | | 0.1792 | 3.0 | 120 | 0.9647 | 0.9357 | 0.6842 | 0.6341 | 0.6582 | | 0.0015 | 4.0 | 160 | 1.1154 | 0.9381 | 0.7027 | 0.6341 | 0.6667 | | 0.0017 | 5.0 | 200 | 1.0833 | 0.9310 | 0.65 | 0.6341 | 0.6420 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.13.3