--- base_model: UBC-NLP/MARBERT tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: marbert-finetuned-wanlp_sarcasm results: [] --- # marbert-finetuned-wanlp_sarcasm This model is a fine-tuned version of [UBC-NLP/MARBERT](https://huggingface.co/UBC-NLP/MARBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6362 - Accuracy: 0.9485 - Precision: 0.7758 - Recall: 0.7814 - F1: 0.7786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2904 | 1.0 | 226 | 0.4947 | 0.9402 | 0.8199 | 0.6201 | 0.7061 | | 0.2199 | 2.0 | 452 | 0.4060 | 0.9406 | 0.7345 | 0.7634 | 0.7487 | | 0.0545 | 3.0 | 678 | 0.6362 | 0.9485 | 0.7758 | 0.7814 | 0.7786 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1