from transformers import AutoTokenizer import torch device1 = torch.device("cuda:0") device2 = torch.device("cuda:1") class SplitModel(torch.nn.Module): def __init__(self, base_model): super(SplitModel, self).__init__() self.embedding_layer = base_model.transformer.wte.to(device1) # self.dropout_layer = base_model.transformer.drop.to(device1) self.gptj_blocks1 = torch.nn.ModuleList(base_model.transformer.h[:14]).to(device1) self.gptj_blocks2 = torch.nn.ModuleList(base_model.transformer.h[14:]).to(device2) self.layer_norm = base_model.transformer.ln_f.to(device2) self.lm_head = base_model.lm_head.to(device2) def forward(self, input_ids, attention_mask): # tensor_ids = self.dropout_layer(self.embedding_layer(input_ids)) tensor_ids = self.embedding_layer(input_ids) position_ids = torch.arange(tensor_ids.shape[1], dtype=torch.long, device=tensor_ids.device) for block in self.gptj_blocks1: tensor_ids = block(tensor_ids, attention_mask=attention_mask, position_ids=position_ids)[0] tensor_ids = tensor_ids.to(device2) position_ids = position_ids.to(device2) attention_mask = attention_mask.to(device2) for block in self.gptj_blocks2: tensor_ids = block(tensor_ids, attention_mask=attention_mask, position_ids=position_ids)[0] tensor_ids = self.layer_norm(tensor_ids) logits = self.lm_head(tensor_ids) return logits.to(device1) model_dir = "pt_fp32" model_path = f"{model_dir}/torch_model.pt" tokenizer = AutoTokenizer.from_pretrained(model_dir) split_model = SplitModel(torch.load(model_path)) input_text = "Hi I am Jade and I love" input_tokens = tokenizer.encode_plus(input_text, return_tensors="pt").to(device1) input_ids = input_tokens["input_ids"] temperature = 0.5 max_new_tokens = 50 with torch.no_grad(): # split_model.eval() for _ in range(max_new_tokens): attention_mask = torch.ones_like(input_ids).to(device1) logits = split_model(input_ids, attention_mask)[:, -1] / temperature probabilities = torch.softmax(logits, dim=-1) sampled_token_ids = torch.multinomial(probabilities, num_samples=1) input_ids = torch.cat((input_ids, sampled_token_ids), dim=-1) del logits, probabilities, sampled_token_ids generated_ids = input_ids.squeeze().tolist() output = tokenizer.decode(generated_ids, skip_special_tokens=True) print(output)