import torch from transformers import AutoTokenizer from torch import nn device1 = torch.device("cuda:0") device2 = torch.device("cuda:1") class SplitModel(nn.Module): def __init__(self, embedding_layer, dropout_layer, gptj_blocks, layer_norm, lm_head): super(SplitModel, self).__init__() self.embedding_layer = embedding_layer self.dropout_layer = dropout_layer self.gptj_blocks = gptj_blocks self.layer_norm = layer_norm self.lm_head = lm_head def forward(self, input_ids, attention_mask): tensor_ids = self.dropout_layer(self.embedding_layer(input_ids)) # GPTJBlock is missing the embedding positions that are necessary for self-attention. # To fix this issue, you need to ensure that the position_ids are passed to each GPTJBlock during the forward pass. position_ids = torch.arange(tensor_ids.shape[1], dtype=torch.long, device=tensor_ids.device) for block in self.gptj_blocks: tensor_ids = block(tensor_ids, attention_mask=attention_mask, position_ids=position_ids)[0] tensor_ids = tensor_ids.to(device2) tensor_ids = self.layer_norm(tensor_ids) logits = self.lm_head(tensor_ids) logits = logits.to(device1) return logits model_dir = "pt_fp32" model_path = f"{model_dir}/torch_model.pt" tokenizer = AutoTokenizer.from_pretrained(model_dir) full_model = torch.load(model_path) embedding_layer = full_model.transformer.wte.to(device1) dropout_layer = full_model.transformer.drop.to(device1) gptj_blocks = full_model.transformer.h.to(device1) layer_norm = full_model.transformer.ln_f.to(device2) lm_head = full_model.lm_head.to(device2) split_model = SplitModel(embedding_layer, dropout_layer, gptj_blocks, layer_norm, lm_head) input_text = "Hi I am Jade and I love" input("Press enter please") input_tokens = tokenizer.encode_plus(input_text, return_tensors="pt").to(device1) input_ids = input_tokens["input_ids"] temperature = 0.8 max_new_tokens = 50 with torch.no_grad(): for _ in range(max_new_tokens): attention_mask = torch.ones_like(input_ids).to(device1) logits = split_model(input_ids, attention_mask)[:, -1] / temperature probabilities = torch.softmax(logits, dim=-1) sampled_token_ids = torch.multinomial(probabilities, num_samples=1) input_ids = torch.cat((input_ids, sampled_token_ids), dim=-1) generated_ids = input_ids.squeeze().tolist() output = tokenizer.decode(generated_ids, skip_special_tokens=True) print(output)