from transformers import AutoTokenizer, AutoModelForCausalLM import re import time import torch class EndpointHandler(): def __init__(self, path = ""): self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = torch.load(f"{path}/torch_model.pt") self.default_template = open(f"{path}/default_template.txt", "r").read() def __call__(self, data): request_inputs = data.pop("inputs", data) template = request_inputs["template"] messages = request_inputs["messages"] char_name = request_inputs["char_name"] user_name = request_inputs["user_name"] template = self.default_template user_input = "\n".join([ "{name}: {message}".format( name = char_name if (id["role"] == "AI") else user_name, message = id["message"].strip() ) for id in messages ]) prompt = template.format( char_name = char_name, user_name = user_name, user_input = user_input ) input_ids = self.tokenizer( prompt + f"\n{char_name}:", return_tensors = "pt" ).to("cuda") encoded_output = self.model.generate( input_ids["input_ids"], max_new_tokens = 50, temperature = 0.5, top_p = 0.9, top_k = 0, repetition_penalty = 1.1, pad_token_id = 50256, num_return_sequences = 1 ) decoded_output = self.tokenizer.decode(encoded_output[0], skip_special_tokens=True).replace(prompt,"") decoded_output = decoded_output.split(f"{char_name}:", 1)[1].split(f"{user_name}:",1)[0].strip() parsed_result = re.sub('\*.*?\*', '', decoded_output).strip() if len(parsed_result) != 0: decoded_output = parsed_result decoded_output = " ".join(decoded_output.replace("*","").split()) try: parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1] if len(parsed_result) != 0: decoded_output = parsed_result except Exception: pass return { "role": "AI", "message": decoded_output, "prompt": prompt }