from transformers import AutoTokenizer import re import torch def model_fn(model_dir): tokenizer = AutoTokenizer.from_pretrained(model_dir) model = torch.load(f"{model_dir}/torch_model.pt") return model, tokenizer def predict_fn(data, load_list): model, tokenizer = load_list request_inputs = data.pop("inputs", data) template = request_inputs["template"] messages = request_inputs["messages"] char_name = request_inputs["char_name"] user_name = request_inputs["user_name"] template = open(f"{template}.txt", "r").read() user_input = "\n".join([ "{name}: {message}".format( name = char_name if (id["role"] == "AI") else user_name, message = id["message"].strip() ) for id in messages ]) prompt = template.format(char_name = char_name, user_name = user_name, user_input = user_input) input_ids = tokenizer(prompt + f"\n{char_name}:", return_tensors = "pt").to("cuda") encoded_output = model.generate( input_ids["input_ids"], max_new_tokens = 50, temperature = 0.5, top_p = 0.9, top_k = 0, repetition_penalty = 1.1, pad_token_id = 50256, num_return_sequences = 1 ) decoded_output = tokenizer.decode(encoded_output[0], skip_special_tokens=True).replace(prompt,"") decoded_output = decoded_output.split(f"{char_name}:", 1)[1].split(f"{user_name}:",1)[0].strip() parsed_result = re.sub('\*.*?\*', '', decoded_output).strip() if len(parsed_result) != 0: decoded_output = parsed_result decoded_output = " ".join(decoded_output.replace("*","").split()) try: parsed_result = decoded_output[:[m.start() for m in re.finditer(r'[.!?]', decoded_output)][-1]+1] if len(parsed_result) != 0: decoded_output = parsed_result except Exception: pass return { "role": "AI", "message": decoded_output }