--- language: - en - zh - de - fr - es - pt - ru - it - ja - ko - vi - ar tags: - pytorch - text-generation - causal-lm - rwkv license: apache-2.0 datasets: - EleutherAI/pile - togethercomputer/RedPajama-Data-1T --- # RWKV-4 World ## Model Description RWKV-4 trained on 100+ world languages (70% English, 15% multilang, 15% code). Some_Pile + Some_RedPajama + Some_OSCAR + All_Wikipedia + All_ChatGPT_Data_I_can_find How to use: * use https://github.com/josStorer/RWKV-Runner for GUI * use latest rwkv pip package (0.8.0+) * use https://github.com/BlinkDL/ChatRWKV/blob/main/v2/benchmark_world.py and https://github.com/BlinkDL/ChatRWKV/blob/main/API_DEMO_WORLD.py to test it The differences between World & Raven: * set pipeline = PIPELINE(model, "rwkv_vocab_v20230424") instead of 20B_tokenizer.json (EXACTLY AS WRITTEN HERE. "rwkv_vocab_v20230424" is included in rwkv 0.7.4+) * use Question/Answer or User/AI or Human/Bot for chat. **DO NOT USE Bob/Alice or Q/A** For 0.1/0.4/1.5B models, use **fp32** for first layer (will overflow in fp16 at this moment - fixable in future), or bf16 if you have 30xx/40xx GPUs. Example strategy: cuda fp32 *1 -> cuda fp16 NOTE: the new greedy tokenizer (https://github.com/BlinkDL/ChatRWKV/blob/main/tokenizer/rwkv_tokenizer.py) will tokenize '\n\n' as one single token instead of ['\n','\n'] QA prompt (replace \n\n in xxx to \n): ``` Question: xxx Answer: ``` and ``` Instruction: xxx Input: xxx Response: ``` A good chat prompt (replace \n\n in xxx to \n): ``` User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: xxx Assistant: ```