import argparse import csv import math def generate_ratios(max_layers, max_width): ratios = [] for i in range(1, 9): # 1/8 steps from 1:1 to 1:3 and vice versa ratio = i / 8 if ratio <= 6: # Ensure the ratio is not greater than 3 ratios.append(ratio) return ratios def generate_experiments(max_layers, max_width, min_layers=1, min_width=1): experiments = [] ratios = generate_ratios(max_layers, max_width) for ratio in ratios: for layers in range(min_layers, max_layers + 1): width = max(int(max_width * ratio), min_width) experiments.append((layers, width)) return experiments def estimate_vram(layer_count, width, input_size, output_size): # Calculate the number of parameters # Each layer has (input_size * width) + width parameters (weights + biases) # The last layer has (width * output_size) + output_size parameters param_count = 0 for i in range(layer_count): if i == 0: param_count += (input_size * width) + width else: param_count += (width * width) + width param_count += (width * output_size) + output_size # Estimate the VRAM usage # Parameters: 4 bytes per parameter (FP32) # Activations: Assume the size of the activations is the same as the input size vram_usage = param_count * 4 + input_size * 4 return vram_usage def calculate_batch_size(memory_gb=20): memory_bytes = memory_gb * (1024 ** 3) # Convert GiB to bytes batch_memory_bytes = memory_bytes / 4 # Divide by 4 # Find the nearest power of 2 batch_size = 2 ** int(math.log2(batch_memory_bytes)) return batch_size def write_csv(experiments, filename): with open(filename, 'w', newline='') as csvfile: writer = csv.writer(csvfile) writer.writerow(['layer_count', 'width', 'vram_usage']) for experiment in experiments: writer.writerow(experiment) def main(): parser = argparse.ArgumentParser(description='Generate a CSV file with a variety of layer counts and widths.') parser.add_argument('--max_layers', type=int, default=72, help='Maximum number of layers (default: 72)') parser.add_argument('--max_width', type=int, default=4096, help='Maximum width (default: 4096)') parser.add_argument('--min_layers', type=int, default=1, help='Minimum number of layers (default: 1)') parser.add_argument('--min_width', type=int, default=1, help='Minimum width (default: 1)') parser.add_argument('--output_file', type=str, default='experiments.csv', help='Output CSV file (default: experiments.csv)') parser.add_argument('--input_size', type=int, default=64*64*3, help='Input size (default: 64*64*3)') parser.add_argument('--output_size', type=int, default=10, help='Output size (default: 10)') parser.add_argument('--memory_gb', type=int, default=20, help='Total memory in GiB (default: 20)') args = parser.parse_args() experiments = generate_experiments(args.max_layers, args.max_width, args.min_layers, args.min_width) experiments_with_vram = [] for experiment in experiments: layer_count, width = experiment vram_usage = estimate_vram(layer_count, width, args.input_size, args.output_size) experiments_with_vram.append((layer_count, width, vram_usage)) print(f'Layer Count: {layer_count}, Width: {width}, Estimated VRAM Usage: {vram_usage} bytes') write_csv(experiments_with_vram, args.output_file) print(f'Generated {len(experiments_with_vram)} experiments and saved to {args.output_file}') # Calculate and print the batch size batch_size = calculate_batch_size(args.memory_gb) print(f'Recommended batch size: {batch_size}') if __name__ == '__main__': main()