BenjaminKUL commited on
Commit
210f756
·
1 Parent(s): 51eebdd

End of training

Browse files
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: SCUT-DLVCLab/lilt-roberta-en-base
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: plus_model
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # plus_model
15
+
16
+ This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.2227
19
+ - Eader: {'precision': 0.6527777777777778, 'recall': 0.6308724832214765, 'f1': 0.6416382252559727, 'number': 149}
20
+ - Nswer: {'precision': 0.7374551971326165, 'recall': 0.7481818181818182, 'f1': 0.7427797833935018, 'number': 1100}
21
+ - Uestion: {'precision': 0.7554833468724614, 'recall': 0.7604251839738349, 'f1': 0.7579462102689487, 'number': 1223}
22
+ - Overall Precision: 0.7415
23
+ - Overall Recall: 0.7472
24
+ - Overall F1: 0.7443
25
+ - Overall Accuracy: 0.8544
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 4
46
+ - eval_batch_size: 4
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - training_steps: 2500
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Eader | Nswer | Uestion | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
+ | 0.1843 | 0.78 | 200 | 0.2061 | {'precision': 0.6296296296296297, 'recall': 0.3422818791946309, 'f1': 0.4434782608695652, 'number': 149} | {'precision': 0.6472906403940887, 'recall': 0.5972727272727273, 'f1': 0.6212765957446809, 'number': 1100} | {'precision': 0.7054794520547946, 'recall': 0.6737530662305805, 'f1': 0.6892513592639062, 'number': 1223} | 0.6767 | 0.6197 | 0.6470 | 0.7748 |
57
+ | 0.1356 | 1.56 | 400 | 0.1477 | {'precision': 0.5701754385964912, 'recall': 0.436241610738255, 'f1': 0.49429657794676807, 'number': 149} | {'precision': 0.6569148936170213, 'recall': 0.6736363636363636, 'f1': 0.6651705565529622, 'number': 1100} | {'precision': 0.6554054054054054, 'recall': 0.713818479149632, 'f1': 0.6833659491193737, 'number': 1223} | 0.6523 | 0.6792 | 0.6655 | 0.8189 |
58
+ | 0.102 | 2.33 | 600 | 0.1666 | {'precision': 0.38974358974358975, 'recall': 0.5100671140939598, 'f1': 0.4418604651162791, 'number': 149} | {'precision': 0.6898444647758463, 'recall': 0.6854545454545454, 'f1': 0.687642498860009, 'number': 1100} | {'precision': 0.7024661893396977, 'recall': 0.7219950940310711, 'f1': 0.7120967741935483, 'number': 1223} | 0.6731 | 0.6930 | 0.6829 | 0.8246 |
59
+ | 0.0836 | 3.11 | 800 | 0.1592 | {'precision': 0.6307692307692307, 'recall': 0.5503355704697986, 'f1': 0.5878136200716846, 'number': 149} | {'precision': 0.6595012897678418, 'recall': 0.6972727272727273, 'f1': 0.6778612461334512, 'number': 1100} | {'precision': 0.7373653686826843, 'recall': 0.7277187244480785, 'f1': 0.7325102880658437, 'number': 1223} | 0.6956 | 0.7035 | 0.6995 | 0.8436 |
60
+ | 0.0657 | 3.89 | 1000 | 0.1658 | {'precision': 0.5869565217391305, 'recall': 0.5436241610738255, 'f1': 0.5644599303135888, 'number': 149} | {'precision': 0.7464788732394366, 'recall': 0.7227272727272728, 'f1': 0.7344110854503464, 'number': 1100} | {'precision': 0.7090620031796503, 'recall': 0.7293540474243663, 'f1': 0.7190648931882304, 'number': 1223} | 0.7184 | 0.7152 | 0.7168 | 0.8457 |
61
+ | 0.0462 | 4.67 | 1200 | 0.1855 | {'precision': 0.656, 'recall': 0.5503355704697986, 'f1': 0.5985401459854014, 'number': 149} | {'precision': 0.6961038961038961, 'recall': 0.730909090909091, 'f1': 0.7130820399113083, 'number': 1100} | {'precision': 0.7286392405063291, 'recall': 0.7530662305805397, 'f1': 0.7406513872135101, 'number': 1223} | 0.7103 | 0.7310 | 0.7205 | 0.8427 |
62
+ | 0.0441 | 5.45 | 1400 | 0.1721 | {'precision': 0.6538461538461539, 'recall': 0.5704697986577181, 'f1': 0.6093189964157705, 'number': 149} | {'precision': 0.7275179856115108, 'recall': 0.7354545454545455, 'f1': 0.7314647377938518, 'number': 1100} | {'precision': 0.7504065040650406, 'recall': 0.7547015535568274, 'f1': 0.7525479005299633, 'number': 1223} | 0.7350 | 0.7350 | 0.7350 | 0.8555 |
63
+ | 0.0347 | 6.23 | 1600 | 0.2052 | {'precision': 0.6312056737588653, 'recall': 0.5973154362416108, 'f1': 0.6137931034482759, 'number': 149} | {'precision': 0.715929203539823, 'recall': 0.7354545454545455, 'f1': 0.7255605381165919, 'number': 1100} | {'precision': 0.7475728155339806, 'recall': 0.7555192150449714, 'f1': 0.7515250101667346, 'number': 1223} | 0.7268 | 0.7371 | 0.7319 | 0.8545 |
64
+ | 0.0294 | 7.0 | 1800 | 0.2374 | {'precision': 0.6190476190476191, 'recall': 0.610738255033557, 'f1': 0.6148648648648649, 'number': 149} | {'precision': 0.7442075996292864, 'recall': 0.73, 'f1': 0.7370353373106929, 'number': 1100} | {'precision': 0.7593671940049959, 'recall': 0.7457072771872445, 'f1': 0.7524752475247525, 'number': 1223} | 0.7441 | 0.7306 | 0.7373 | 0.8401 |
65
+ | 0.0239 | 7.78 | 2000 | 0.2227 | {'precision': 0.647887323943662, 'recall': 0.6174496644295302, 'f1': 0.6323024054982819, 'number': 149} | {'precision': 0.7139061116031886, 'recall': 0.7327272727272728, 'f1': 0.7231942575145804, 'number': 1100} | {'precision': 0.7662229617304492, 'recall': 0.7530662305805397, 'f1': 0.7595876288659793, 'number': 1223} | 0.7355 | 0.7358 | 0.7357 | 0.8472 |
66
+ | 0.0204 | 8.56 | 2200 | 0.2263 | {'precision': 0.6375838926174496, 'recall': 0.6375838926174496, 'f1': 0.6375838926174496, 'number': 149} | {'precision': 0.7371737173717372, 'recall': 0.7445454545454545, 'f1': 0.7408412483039349, 'number': 1100} | {'precision': 0.7540453074433657, 'recall': 0.7620605069501226, 'f1': 0.7580317202114681, 'number': 1223} | 0.7396 | 0.7468 | 0.7432 | 0.8539 |
67
+ | 0.0184 | 9.34 | 2400 | 0.2227 | {'precision': 0.6527777777777778, 'recall': 0.6308724832214765, 'f1': 0.6416382252559727, 'number': 149} | {'precision': 0.7374551971326165, 'recall': 0.7481818181818182, 'f1': 0.7427797833935018, 'number': 1100} | {'precision': 0.7554833468724614, 'recall': 0.7604251839738349, 'f1': 0.7579462102689487, 'number': 1223} | 0.7415 | 0.7472 | 0.7443 | 0.8544 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.34.0
73
+ - Pytorch 2.1.0.dev20230810
74
+ - Datasets 2.14.4
75
+ - Tokenizers 0.14.1
added_tokens.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<mask>": 50264,
4
+ "<pad>": 1,
5
+ "<s>": 0,
6
+ "<unk>": 3
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3ImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": "<mask>",
6
+ "pad_token": "<pad>",
7
+ "sep_token": "</s>",
8
+ "unk_token": "<unk>"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "additional_special_tokens": [],
46
+ "bos_token": "<s>",
47
+ "clean_up_tokenization_spaces": true,
48
+ "cls_token": "<s>",
49
+ "cls_token_box": [
50
+ 0,
51
+ 0,
52
+ 0,
53
+ 0
54
+ ],
55
+ "eos_token": "</s>",
56
+ "errors": "replace",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "<pad>",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv3Processor",
69
+ "sep_token": "</s>",
70
+ "sep_token_box": [
71
+ 0,
72
+ 0,
73
+ 0,
74
+ 0
75
+ ],
76
+ "tokenizer_class": "LayoutLMv3Tokenizer",
77
+ "trim_offsets": true,
78
+ "unk_token": "<unk>"
79
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff