--- license: - cc-by-nc-sa-4.0 source_datasets: - original task_ids: - word-sense-disambiguation pretty_name: word-sense-linking-dataset tags: - word-sense-linking - word-sense-disambiguation - lexical-semantics size_categories: - 10K- Acknowledge our [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://github.com/Babelscape/WSL/wsl_data_license.txt) to access the repository extra_gated_description: Our team may take 2-3 days to process your request extra_gated_button_content: Acknowledge license language: - en base_model: microsoft/deberta-v3-base --- --- # Word Sense Linking: Disambiguating Outside the Sandbox [![Conference](http://img.shields.io/badge/ACL-2024-4b44ce.svg)](https://2024.aclweb.org/) [![Paper](http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg)](https://aclanthology.org/2024.findings-acl.851/) [![Hugging Face Collection](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-FCD21D)](https://huggingface.co/collections/Babelscape/word-sense-linking-66ace2182bc45680964cefcb) [![GitHub](https://img.shields.io/badge/GitHub-grey?logo=github&link=https%3A%2F%2Fgithub.com%2FBabelscape%2FWSL)](https://github.com/Babelscape/WSL) ## Model Description The Word Sense Linking model is designed to identify and disambiguate spans of text to their most suitable senses from a reference inventory. The annotations are provided as sense keys from WordNet, a large lexical database of English. ## Installation Installation from PyPI: ```bash git clone https://github.com/Babelscape/WSL cd WSL pip install -r requirements.txt ``` ## Usage WSL is composed of two main components: a retriever and a reader. The retriever is responsible for retrieving relevant senses from a senses inventory (e.g WordNet), while the reader is responsible for extracting spans from the input text and link them to the retrieved documents. WSL can be used with the `from_pretrained` method to load a pre-trained pipeline. ```python from wsl import WSL from wsl.inference.data.objects import WSLOutput wsl_model = WSL.from_pretrained("Babelscape/wsl-base") relik_out: WSLOutput = wsl_model("Bus drivers drive busses for a living.") ``` WSLOutput( text='Bus drivers drive busses for a living.', tokens=['Bus', 'drivers', 'drive', 'busses', 'for', 'a', 'living', '.'], id=0, spans=[ Span(start=0, end=11, label='bus driver: someone who drives a bus', text='Bus drivers'), Span(start=12, end=17, label='drive: operate or control a vehicle', text='drive'), Span(start=18, end=24, label='bus: a vehicle carrying many passengers; used for public transport', text='busses'), Span(start=31, end=37, label='living: the financial means whereby one lives', text='living') ], candidates=Candidates( candidates=[ {"text": "bus driver: someone who drives a bus", "id": "bus_driver%1:18:00::", "metadata": {}}, {"text": "driver: the operator of a motor vehicle", "id": "driver%1:18:00::", "metadata": {}}, {"text": "driver: someone who drives animals that pull a vehicle", "id": "driver%1:18:02::", "metadata": {}}, {"text": "bus: a vehicle carrying many passengers; used for public transport", "id": "bus%1:06:00::", "metadata": {}}, {"text": "living: the financial means whereby one lives", "id": "living%1:26:00::", "metadata": {}} ] ), ) ## Model Performance Here you can find the performances of our model on the [WSL evaluation dataset](https://huggingface.co/datasets/Babelscape/wsl). ### Validation (SE07) | Models | P | R | F1 | |--------------|------|--------|--------| | BEM_SUP | 67.6 | 40.9 | 51.0 | | BEM_HEU | 70.8 | 51.2 | 59.4 | | ConSeC_SUP | 76.4 | 46.5 | 57.8 | | ConSeC_HEU | **76.7** | 55.4 | 64.3 | | **Our Model**| 73.8 | **74.9** | **74.4** | ### Test (ALL_FULL) | Models | P | R | F1 | |--------------|------|--------|--------| | BEM_SUP | 74.8 | 50.7 | 60.4 | | BEM_HEU | 76.6 | 61.2 | 68.0 | | ConSeC_SUP | 78.9 | 53.1 | 63.5 | | ConSeC_HEU | **80.4** | 64.3 | 71.5 | | **Our Model**| 75.2 | **76.7** | **75.9** | ## Additional Information **Licensing Information**: Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents belongs to Babelscape. **Arxiv Paper:** [Word Sense Linking: Disambiguating Outside the Sandbox](https://arxiv.org/abs/2412.09370) ## Citation Information ```bibtex @inproceedings{bejgu-etal-2024-wsl, title = "Word Sense Linking: Disambiguating Outside the Sandbox", author = "Bejgu, Andrei Stefan and Barba, Edoardo and Procopio, Luigi and Fern{\'a}ndez-Castro, Alberte and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: ACL 2024", month = aug, year = "2024", address = "Bangkok, Thailand", publisher = "Association for Computational Linguistics", } ``` **Contributions**: Thanks to [@andreim14](https://github.com/andreim14), [@edobobo](https://github.com/edobobo), [@poccio](https://github.com/poccio) and [@navigli](https://github.com/navigli) for adding this model.