alescire94
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -8,8 +8,7 @@ language:
|
|
8 |
|
9 |
|
10 |
<div align="center">
|
11 |
-
<img src="https://github.com/Babelscape/FENICE/blob/master/new_logo.png?raw=True" height="
|
12 |
-
<img src="https://github.com/Babelscape/FENICE/blob/master/Sapienza_Babelscape.png?raw=true" height="50">
|
13 |
</div>
|
14 |
|
15 |
# Factuality Evaluation of summarization based on Natural Language Inference and Claim Extraction
|
@@ -19,7 +18,9 @@ language:
|
|
19 |
[![Paper](http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg)](https://aclanthology.org/2024.findings-acl.841.pdf)
|
20 |
[![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
21 |
|
22 |
-
|
|
|
|
|
23 |
FENICE (Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction) is a factuality-oriented metric for summarization.
|
24 |
This package implements the FENICE metric, allowing users to evaluate the factual consistency of document summaries.
|
25 |
|
@@ -28,7 +29,7 @@ This package implements the FENICE metric, allowing users to evaluate the factua
|
|
28 |
Factual consistency in summarization is critical for ensuring that the generated summaries accurately reflect the content of the original documents.
|
29 |
FENICE leverages NLI and claim extraction techniques to assess the factual alignment between a summary and its corresponding document.
|
30 |
|
31 |
-
For more details, you can read the full paper: [FENICE: Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction](https://
|
32 |
|
33 |
## 🛠️ Installation
|
34 |
|
@@ -41,7 +42,12 @@ conda activate FENICE
|
|
41 |
To install the FENICE package, you can use `pip`:
|
42 |
|
43 |
```sh
|
44 |
-
pip install
|
|
|
|
|
|
|
|
|
|
|
45 |
```
|
46 |
|
47 |
## Requirements
|
@@ -49,7 +55,6 @@ pip install git+https://github.com/Babelscape/FENICE.git
|
|
49 |
The package requires the following dependencies:
|
50 |
|
51 |
• spacy==3.7.4
|
52 |
-
• en_core_web_sm
|
53 |
• fastcoref==2.1.6
|
54 |
• transformers~=4.38.2
|
55 |
• sentencepiece==0.2.0
|
|
|
8 |
|
9 |
|
10 |
<div align="center">
|
11 |
+
<img src="https://github.com/Babelscape/FENICE/blob/master/new_logo.png?raw=True" height="200", width="200">
|
|
|
12 |
</div>
|
13 |
|
14 |
# Factuality Evaluation of summarization based on Natural Language Inference and Claim Extraction
|
|
|
18 |
[![Paper](http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg)](https://aclanthology.org/2024.findings-acl.841.pdf)
|
19 |
[![License: CC BY-NC-SA 4.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
20 |
|
21 |
+
<div align='center'>
|
22 |
+
<img src="https://github.com/Babelscape/FENICE/blob/master/Sapienza_Babelscape.png?raw=True" height="70">
|
23 |
+
</div>
|
24 |
FENICE (Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction) is a factuality-oriented metric for summarization.
|
25 |
This package implements the FENICE metric, allowing users to evaluate the factual consistency of document summaries.
|
26 |
|
|
|
29 |
Factual consistency in summarization is critical for ensuring that the generated summaries accurately reflect the content of the original documents.
|
30 |
FENICE leverages NLI and claim extraction techniques to assess the factual alignment between a summary and its corresponding document.
|
31 |
|
32 |
+
For more details, you can read the full paper: [FENICE: Factuality Evaluation of Summarization based on Natural Language Inference and Claim Extraction](https://aclanthology.org/2024.findings-acl.841/).
|
33 |
|
34 |
## 🛠️ Installation
|
35 |
|
|
|
42 |
To install the FENICE package, you can use `pip`:
|
43 |
|
44 |
```sh
|
45 |
+
pip install FENICE
|
46 |
+
```
|
47 |
+
|
48 |
+
install spacy model:
|
49 |
+
```sh
|
50 |
+
python -m spacy download en_core_web_sm
|
51 |
```
|
52 |
|
53 |
## Requirements
|
|
|
55 |
The package requires the following dependencies:
|
56 |
|
57 |
• spacy==3.7.4
|
|
|
58 |
• fastcoref==2.1.6
|
59 |
• transformers~=4.38.2
|
60 |
• sentencepiece==0.2.0
|