--- tags: - image-classification - ecology - animals - re-identification library_name: wildlife-datasets license: cc-by-nc-4.0 --- # Model card for MegaDescriptor-B-224 A Swin-B image feature model. Supervisely pre-trained on animal re-identification datasets. ## Model Details - **Model Type:** Animal re-identification / feature backbone - **Model Stats:** - Params (M): 109.1 - Image size: 224 x 224 - Architecture: swin_base_patch4_window7_224 - **Papers:** - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows --> https://arxiv.org/abs/2103.14030 - **Original:** ?? - **Pretrain Dataset:** All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets ## Model Usage ### Image Embeddings ```python import timm import torch import torchvision.transforms as T from PIL import Image from urllib.request import urlopen model = timm.create_model("hf-hub:BVRA/MegaDescriptor-B-224", pretrained=True) model = model.eval() train_transforms = T.Compose([T.Resize(224), T.ToTensor(), T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex TBD ```