--- language: - es license: "cc-by-4.0" tags: - "national library of spain" - "spanish" - "bne" - "qa" - "question answering" datasets: - "BSC-TeMU/SQAC" metrics: - "f1" --- # Spanish RoBERTa-large trained on BNE finetuned for Spanish Question Answering Corpus (SQAC) dataset. RoBERTa-large-bne is a transformer-based masked language model for the Spanish language. It is based on the [RoBERTa](https://arxiv.org/abs/1907.11692) large model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB of clean and deduplicated text processed for this work, compiled from the web crawlings performed by the [National Library of Spain (Biblioteca Nacional de España)](http://www.bne.es/en/Inicio/index.html) from 2009 to 2019. Original pre-trained model can be found here: https://huggingface.co/BSC-TeMU/roberta-large-bne ## Dataset The dataset used is the one from the [SQAC corpus](https://huggingface.co/datasets/BSC-TeMU/SQAC). ## Evaluation and results F1 Score: 0.7993 (average of 5 runs). For evaluation details visit our [GitHub repository](https://github.com/PlanTL-SANIDAD/lm-spanish). ## Citing Check out our paper for all the details: https://arxiv.org/abs/2107.07253 ``` @misc{gutierrezfandino2021spanish, title={Spanish Language Models}, author={Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquín Silveira-Ocampo and Casimiro Pio Carrino and Aitor Gonzalez-Agirre and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Marta Villegas}, year={2021}, eprint={2107.07253}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```