For more details please refer to our github repo: https://github.com/FlagOpen/FlagEmbedding # [Visualized BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual) ## 🔔 News **[2024.8.27] The core code for the evaluation and fine-tuning of VISTA can be obtained from [this link](https://github.com/JUNJIE99/VISTA_Evaluation_FineTuning). This includes Stage2 training, downstream task fine-tuning, as well as the datasets we used for evaluation.** **[2024.6.13] We have released [VISTA-S2 dataset](https://huggingface.co/datasets/JUNJIE99/VISTA_S2), a hybrid multi-modal dataset consisting of over 500,000 instances for multi-modal training (Stage-2 training in our paper).** **[2024.6.7] We have released our paper. [Arxiv Link](https://arxiv.org/abs/2406.04292)** **[2024.3.18] We have released our code and model.** ## Introduction In this project, we introduce Visualized-BGE, a universal multi-modal embedding model. By incorporating image token embedding into the BGE Text Embedding framework, Visualized-BGE gains the flexibility to process multi-modal data that goes beyond just text. Visualized-BGE is mainly used for hybrid modal retrieval tasks, including but not limited to: - Multi-Modal Knowledge Retrieval (query: text; candidate: image-text pairs, text, or image) e.g. [WebQA](https://github.com/WebQnA/WebQA) - Composed Image Retrieval (query: image-text pair; candidate: images) e.g. [CIRR](https://github.com/Cuberick-Orion/CIRR), [FashionIQ](https://github.com/XiaoxiaoGuo/fashion-iq) - Knowledge Retrieval with Multi-Modal Queries (query: image-text pair; candidate: texts) e.g. [ReMuQ](https://github.com/luomancs/ReMuQ) Moreover, Visualized BGE fully preserves the strong text embedding capabilities of the original BGE model : ) ## Specs ### Model | **Model Name** | **Dimension** | **Text Embedding Model** | **Language** | **Weight** | | --- | --- | --- | --- | --- | | BAAI/bge-visualized-base-en-v1.5 | 768 | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [🤗 HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_base_en_v1.5.pth) | | BAAI/bge-visualized-m3 | 1024 | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [🤗 HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_m3.pth) | ### Data We have generated a hybrid multi-modal dataset consisting of over 500,000 instances for multi-modal training (Stage-2 training in our paper). You can download our dataset from this [🤗 HF Link](https://huggingface.co/datasets/JUNJIE99/VISTA_S2). Process the image compression package with the following commands: ```bash cat images.tar.part* > images.tar tar -xvf images.tar ``` If you obtain the following directory structure. You can then use the annotation information (json files) for your own training: ``` images |__coco |__edit_image ``` ## Usage ### Installation: #### Install FlagEmbedding: ``` git clone https://github.com/FlagOpen/FlagEmbedding.git cd FlagEmbedding/research/visual_bge pip install -e . ``` #### Another Core Packages: ``` pip install torchvision timm einops ftfy ``` You don't need to install `xformer` and `apex`. They are not essential for inference and can often cause issues. ### Generate Embedding for Multi-Modal Data: Visualized-BGE provides the versatility to encode multi-modal data in a variety of formats, whether it's purely text, solely image-based, or a combination of both. > **Note:** Please download the model weight file ([bge-visualized-base-en-v1.5](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_base_en_v1.5.pth?download=true), [bge-visualized-m3](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_m3.pth?download=true)) in advance and pass the path to the `model_weight` parameter. - Composed Image Retrieval ``` python ####### Use Visualized BGE doing composed image retrieval import torch from visual_bge.modeling import Visualized_BGE model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth") model.eval() with torch.no_grad(): query_emb = model.encode(image="./imgs/cir_query.png", text="Make the background dark, as if the camera has taken the photo at night") candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png") candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png") sim_1 = query_emb @ candi_emb_1.T sim_2 = query_emb @ candi_emb_2.T print(sim_1, sim_2) # tensor([[0.8750]]) tensor([[0.7816]]) ``` - Multi-Modal Knowledge Retrieval ``` python ####### Use Visualized BGE doing multi-modal knowledge retrieval import torch from visual_bge.modeling import Visualized_BGE model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth") model.eval() with torch.no_grad(): query_emb = model.encode(text="Are there sidewalks on both sides of the Mid-Hudson Bridge?") candi_emb_1 = model.encode(text="The Mid-Hudson Bridge, spanning the Hudson River between Poughkeepsie and Highland.", image="./imgs/wiki_candi_1.jpg") candi_emb_2 = model.encode(text="Golden_Gate_Bridge", image="./imgs/wiki_candi_2.jpg") candi_emb_3 = model.encode(text="The Mid-Hudson Bridge was designated as a New York State Historic Civil Engineering Landmark by the American Society of Civil Engineers in 1983. The bridge was renamed the \"Franklin Delano Roosevelt Mid-Hudson Bridge\" in 1994.") sim_1 = query_emb @ candi_emb_1.T sim_2 = query_emb @ candi_emb_2.T sim_3 = query_emb @ candi_emb_3.T print(sim_1, sim_2, sim_3) # tensor([[0.6932]]) tensor([[0.4441]]) tensor([[0.6415]]) ``` - Multilingual Multi-Modal Retrieval ``` python ##### Use M3 doing Multilingual Multi-Modal Retrieval import torch from visual_bge.modeling import Visualized_BGE model = Visualized_BGE(model_name_bge = "BAAI/bge-m3", model_weight="path: Visualized_m3.pth") model.eval() with torch.no_grad(): query_emb = model.encode(image="./imgs/cir_query.png", text="一匹马牵着这辆车") candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png") candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png") sim_1 = query_emb @ candi_emb_1.T sim_2 = query_emb @ candi_emb_2.T print(sim_1, sim_2) # tensor([[0.7026]]) tensor([[0.8075]]) ``` ## Downstream Application Cases - [Huixiangdou](https://github.com/InternLM/HuixiangDou): Using Visualized BGE for the group chat assistant. ## Evaluation Result Visualized BGE delivers outstanding zero-shot performance across multiple hybrid modal retrieval tasks. It can also serve as a base model for downstream fine-tuning for hybrid modal retrieval tasks. #### Zero-shot Performance - Statistical information of the zero-shot multi-modal retrieval benchmark datasets. During the zero-shot evaluation, we utilize the queries from the validation or test set of each dataset to perform retrieval assessments within the entire corpus of the respective dataset. ![Statistical information for the zero-shot multi-modal retrieval benchmark datasets.](./imgs/zs-benchmark.png) - Zero-shot evaluation results with Recall@5 on various hybrid multi-modal retrieval benchmarks. The -MM notation indicates baseline models that have undergone multi-modal training on our generated data. ![Zero-shot evaluation results with Recall@5 on various hybrid multi-modal retrieval benchmarks.](./imgs/zs-performance.png) #### Fine-tuning on Downstream Tasks - Supervised fine-tuning performance on the WebQA dataset. All retrievals are performed on the entire deduplicated corpus. ![image.png](./imgs/SFT-WebQA.png) - Supervised fine-tuning performance on the CIRR test set. ![image.png](./imgs/SFT-CIRR.png) - Supervised fine-tuning performance on the ReMuQ test set. ![image.png](./imgs/SFT-ReMuQ.png) ## FAQ **Q1: Can Visualized BGE be used for cross-modal retrieval (text to image)?** A1: While it is technically possible, it's not the recommended use case. Our model focus on augmenting hybrid modal retrieval tasks with visual capabilities. ## Acknowledgement The image token embedding model in this project is built upon the foundations laid by [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP). ## Citation If you find this repository useful, please consider giving a star ⭐ and citation ``` @article{zhou2024vista, title={VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval}, author={Zhou, Junjie and Liu, Zheng and Xiao, Shitao and Zhao, Bo and Xiong, Yongping}, journal={arXiv preprint arXiv:2406.04292}, year={2024} } ```