hyxmmm commited on
Commit
13528a3
·
verified ·
1 Parent(s): e4f8807

Upload configuration_mixtral.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_mixtral.py +169 -0
configuration_mixtral.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Mixtral model configuration"""
16
+
17
+ from transformers import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "mistral-ai/Mixtral-8x7B": "https://huggingface.co/mistral-ai/Mixtral-8x7B/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class MixtralConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
31
+ Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
32
+ with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.
33
+
34
+ [mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
35
+ [mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`MixtralModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 14336):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer encoder.
53
+ num_key_value_heads (`int`, *optional*, defaults to 8):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
63
+ The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
64
+ allows sequence of up to 4096*32 tokens.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ pad_token_id (`int`, *optional*):
73
+ The id of the padding token.
74
+ bos_token_id (`int`, *optional*, defaults to 1):
75
+ The id of the "beginning-of-sequence" token.
76
+ eos_token_id (`int`, *optional*, defaults to 2):
77
+ The id of the "end-of-sequence" token.
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
+ Whether the model's input and output word embeddings should be tied.
80
+ rope_theta (`float`, *optional*, defaults to 1000000.0):
81
+ The base period of the RoPE embeddings.
82
+ sliding_window (`int`, *optional*, defaults to 4096):
83
+ Sliding window attention window size. If not specified, will default to `4096`.
84
+ attention_dropout (`float`, *optional*, defaults to 0.0):
85
+ The dropout ratio for the attention probabilities.
86
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
87
+ The number of experts to root per-token, can be also interpreted as the `top-p` routing
88
+ parameter
89
+ num_local_experts (`int`, *optional*, defaults to 8):
90
+ Number of experts per Sparse MLP layer.
91
+ output_router_logits (`bool`, *optional*, defaults to `False`):
92
+ Whether or not the router logits should be returned by the model. Enabeling this will also
93
+ allow the model to output the auxiliary loss. See [here]() for more details
94
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
95
+ The aux loss factor for the total loss.
96
+
97
+ ```python
98
+ >>> from transformers import MixtralModel, MixtralConfig
99
+
100
+ >>> # Initializing a Mixtral 7B style configuration
101
+ >>> configuration = MixtralConfig()
102
+
103
+ >>> # Initializing a model from the Mixtral 7B style configuration
104
+ >>> model = MixtralModel(configuration)
105
+
106
+ >>> # Accessing the model configuration
107
+ >>> configuration = model.config
108
+ ```"""
109
+
110
+ model_type = "aquila3"
111
+ keys_to_ignore_at_inference = ["past_key_values"]
112
+
113
+ def __init__(
114
+ self,
115
+ vocab_size=32000,
116
+ hidden_size=4096,
117
+ intermediate_size=14336,
118
+ num_hidden_layers=32,
119
+ num_attention_heads=32,
120
+ num_key_value_heads=8,
121
+ hidden_act="silu",
122
+ max_position_embeddings=4096 * 32,
123
+ initializer_range=0.02,
124
+ rms_norm_eps=1e-5,
125
+ use_cache=True,
126
+ pad_token_id=None,
127
+ bos_token_id=1,
128
+ eos_token_id=2,
129
+ tie_word_embeddings=False,
130
+ rope_theta=1e6,
131
+ sliding_window=4096,
132
+ attention_dropout=0.0,
133
+ num_experts_per_tok=2,
134
+ num_local_experts=8,
135
+ output_router_logits=False,
136
+ router_aux_loss_coef=0.001,
137
+ **kwargs,
138
+ ):
139
+ self.vocab_size = vocab_size
140
+ self.max_position_embeddings = max_position_embeddings
141
+ self.hidden_size = hidden_size
142
+ self.intermediate_size = intermediate_size
143
+ self.num_hidden_layers = num_hidden_layers
144
+ self.num_attention_heads = num_attention_heads
145
+ self.sliding_window = sliding_window
146
+
147
+ # for backward compatibility
148
+ if num_key_value_heads is None:
149
+ num_key_value_heads = num_attention_heads
150
+
151
+ self.num_key_value_heads = num_key_value_heads
152
+ self.hidden_act = hidden_act
153
+ self.initializer_range = initializer_range
154
+ self.rms_norm_eps = rms_norm_eps
155
+ self.use_cache = use_cache
156
+ self.rope_theta = rope_theta
157
+ self.attention_dropout = attention_dropout
158
+
159
+ self.num_experts_per_tok = num_experts_per_tok
160
+ self.num_local_experts = num_local_experts
161
+ self.output_router_logits = output_router_logits
162
+ self.router_aux_loss_coef = router_aux_loss_coef
163
+ super().__init__(
164
+ pad_token_id=pad_token_id,
165
+ bos_token_id=bos_token_id,
166
+ eos_token_id=eos_token_id,
167
+ tie_word_embeddings=tie_word_embeddings,
168
+ **kwargs,
169
+ )