from transformers import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class PureRobertaConfig(PretrainedConfig): model_type = "pure_roberta" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, svd_rank=5, # A slightly overestimated rank of token embedding matrix num_pc_to_remove=1, # Number of principal component to remove center=False, # If True, centre the input token embedding matrix num_iters=2, # Number of subspace iterations to conduct alpha=1, # Feature expression factor in parameter-free self-attention module disable_pcr=False, disable_pfsa=False, disable_covariance=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout self.svd_rank = svd_rank self.num_pc_to_remove = num_pc_to_remove self.center = center self.num_iters = num_iters self.alpha = alpha self.disable_pcr = disable_pcr self.disable_pfsa = disable_pfsa self.disable_covariance = disable_covariance