from basicsr.utils.registry import ARCH_REGISTRY from torch import nn as nn from torch.nn import functional as F @ARCH_REGISTRY.register() class SRVGGNetCompact(nn.Module): """A compact VGG-style network structure for super-resolution. It is a compact network structure, which performs upsampling in the last layer and no convolution is conducted on the HR feature space. Args: num_in_ch (int): Channel number of inputs. Default: 3. num_out_ch (int): Channel number of outputs. Default: 3. num_feat (int): Channel number of intermediate features. Default: 64. num_conv (int): Number of convolution layers in the body network. Default: 16. upscale (int): Upsampling factor. Default: 4. act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu. """ def __init__(self, num_in_ch = 3, num_out_ch = 3, num_feat = 64, num_conv = 16, upscale = 4, act_type = 'prelu'): super(SRVGGNetCompact, self).__init__() self.num_in_ch = num_in_ch self.num_out_ch = num_out_ch self.num_feat = num_feat self.num_conv = num_conv self.upscale = upscale self.act_type = act_type self.body = nn.ModuleList() # the first conv self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)) # the first activation if act_type == 'relu': activation = nn.ReLU(inplace = True) elif act_type == 'prelu': activation = nn.PReLU(num_parameters = num_feat) elif act_type == 'leakyrelu': activation = nn.LeakyReLU(negative_slope = 0.1, inplace = True) self.body.append(activation) # the body structure for _ in range(num_conv): self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1)) # activation if act_type == 'relu': activation = nn.ReLU(inplace = True) elif act_type == 'prelu': activation = nn.PReLU(num_parameters = num_feat) elif act_type == 'leakyrelu': activation = nn.LeakyReLU(negative_slope = 0.1, inplace = True) self.body.append(activation) # the last conv self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1)) # upsample self.upsampler = nn.PixelShuffle(upscale) def forward(self, x): out = x for i in range(0, len(self.body)): out = self.body[i](out) out = self.upsampler(out) # add the nearest upsampled image, so that the network learns the residual base = F.interpolate(x, scale_factor = self.upscale, mode = 'nearest') out += base return out