from io import BytesIO import torch from internals.data.dataAccessor import update_db from internals.data.task import ModelType, Task, TaskType from internals.pipelines.inpainter import InPainter from internals.pipelines.object_remove import ObjectRemoval from internals.pipelines.prompt_modifier import PromptModifier from internals.pipelines.remove_background import (RemoveBackground, RemoveBackgroundV2) from internals.pipelines.replace_background import ReplaceBackground from internals.pipelines.safety_checker import SafetyChecker from internals.pipelines.upscaler import Upscaler from internals.util.avatar import Avatar from internals.util.cache import auto_clear_cuda_and_gc, clear_cuda from internals.util.commons import (construct_default_s3_url, upload_image, upload_images) from internals.util.config import (num_return_sequences, set_configs_from_task, set_root_dir) from internals.util.failure_hander import FailureHandler from internals.util.slack import Slack torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True auto_mode = False slack = Slack() prompt_modifier = PromptModifier(num_of_sequences=num_return_sequences) upscaler = Upscaler() inpainter = InPainter() safety_checker = SafetyChecker() object_removal = ObjectRemoval() remove_background_v2 = RemoveBackgroundV2() avatar = Avatar() replace_background = ReplaceBackground() @update_db @slack.auto_send_alert def remove_bg(task: Task): # remove_background = RemoveBackground() output_image = remove_background_v2.remove(task.get_imageUrl()) output_key = "crecoAI/{}_rmbg.png".format(task.get_taskId()) upload_image(output_image, output_key) return {"generated_image_url": construct_default_s3_url(output_key)} @update_db @slack.auto_send_alert def inpaint(task: Task): prompt = avatar.add_code_names(task.get_prompt()) if task.is_prompt_engineering(): prompt = prompt_modifier.modify(prompt) else: prompt = [prompt] * num_return_sequences print({"prompts": prompt}) images = inpainter.process( prompt=prompt, image_url=task.get_imageUrl(), mask_image_url=task.get_maskImageUrl(), width=task.get_width(), height=task.get_height(), seed=task.get_seed(), negative_prompt=[task.get_negative_prompt()] * num_return_sequences, ) generated_image_urls = upload_images(images, "_inpaint", task.get_taskId()) clear_cuda() return {"modified_prompts": prompt, "generated_image_urls": generated_image_urls} @update_db @slack.auto_send_alert def remove_object(task: Task): output_key = "crecoAI/{}_object_remove.png".format(task.get_taskId()) images = object_removal.process( image_url=task.get_imageUrl(), mask_image_url=task.get_maskImageUrl(), seed=task.get_seed(), width=task.get_width(), height=task.get_height(), ) generated_image_urls = upload_image(images[0], output_key) clear_cuda() return {"generated_image_urls": generated_image_urls} @update_db @slack.auto_send_alert def replace_bg(task: Task): prompt = task.get_prompt() if task.is_prompt_engineering(): prompt = prompt_modifier.modify(prompt) else: prompt = [prompt] * num_return_sequences images, has_nsfw = replace_background.replace( image=task.get_imageUrl(), prompt=prompt, negative_prompt=[task.get_negative_prompt()] * num_return_sequences, seed=task.get_seed(), width=task.get_width(), height=task.get_height(), steps=task.get_steps(), resize_dimension=task.get_resize_dimension(), product_scale_width=task.get_image_scale(), ) generated_image_urls = upload_images(images, "_replace_bg", task.get_taskId()) return { "modified_prompts": prompt, "generated_image_urls": generated_image_urls, "has_nsfw": has_nsfw, } @update_db @slack.auto_send_alert def upscale_image(task: Task): output_key = "crecoAI/{}_upscale.png".format(task.get_taskId()) out_img = None if task.get_modelType() == ModelType.ANIME: print("Using Anime model") out_img = upscaler.upscale_anime( image=task.get_imageUrl(), width=task.get_width(), height=task.get_height(), face_enhance=task.get_face_enhance(), resize_dimension=task.get_resize_dimension(), ) else: print("Using Real model") out_img = upscaler.upscale( image=task.get_imageUrl(), width=task.get_width(), height=task.get_height(), face_enhance=task.get_face_enhance(), resize_dimension=task.get_resize_dimension(), ) upload_image(BytesIO(out_img), output_key) return {"generated_image_url": construct_default_s3_url(output_key)} def model_fn(model_dir): print("Logs: model loaded .... starts") set_root_dir(__file__) FailureHandler.register() avatar.load_local(model_dir) prompt_modifier.load() safety_checker.load() object_removal.load(model_dir) upscaler.load() inpainter.load() replace_background.load(upscaler, remove_background_v2) print("Logs: model loaded ....") return @FailureHandler.clear def predict_fn(data, pipe): task = Task(data) print("task is ", data) FailureHandler.handle(task) try: # Set set_environment set_configs_from_task(task) # Apply safety checker based on environment safety_checker.apply(inpainter) # Fetch avatars avatar.fetch_from_network(task.get_model_id()) task_type = task.get_type() if task_type == TaskType.REMOVE_BG: return remove_bg(task) elif task_type == TaskType.INPAINT: return inpaint(task) elif task_type == TaskType.UPSCALE_IMAGE: return upscale_image(task) elif task_type == TaskType.OBJECT_REMOVAL: return remove_object(task) elif task_type == TaskType.REPLACE_BG: return replace_bg(task) else: raise Exception("Invalid task type") except Exception as e: print(f"Error: {e}") slack.error_alert(task, e) return None