# OFT network module import math import os from typing import Dict, List, Optional, Tuple, Type, Union from diffusers import AutoencoderKL from transformers import CLIPTextModel import numpy as np import torch import re RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") class OFTModule(torch.nn.Module): """ replaces forward method of the original Linear, instead of replacing the original Linear module. """ def __init__( self, oft_name, org_module: torch.nn.Module, multiplier=1.0, dim=4, alpha=1, ): """ dim -> num blocks alpha -> constraint """ super().__init__() self.oft_name = oft_name self.num_blocks = dim if "Linear" in org_module.__class__.__name__: out_dim = org_module.out_features elif "Conv" in org_module.__class__.__name__: out_dim = org_module.out_channels if type(alpha) == torch.Tensor: alpha = alpha.detach().numpy() self.constraint = alpha * out_dim self.register_buffer("alpha", torch.tensor(alpha)) self.block_size = out_dim // self.num_blocks self.oft_blocks = torch.nn.Parameter(torch.zeros(self.num_blocks, self.block_size, self.block_size)) self.out_dim = out_dim self.shape = org_module.weight.shape self.multiplier = multiplier self.org_module = [org_module] # moduleにならないようにlistに入れる def apply_to(self): self.org_forward = self.org_module[0].forward self.org_module[0].forward = self.forward def get_weight(self, multiplier=None): if multiplier is None: multiplier = self.multiplier block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=self.constraint) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) block_R_weighted = self.multiplier * block_R + (1 - self.multiplier) * I R = torch.block_diag(*block_R_weighted) return R def forward(self, x, scale=None): x = self.org_forward(x) if self.multiplier == 0.0: return x R = self.get_weight().to(x.device, dtype=x.dtype) if x.dim() == 4: x = x.permute(0, 2, 3, 1) x = torch.matmul(x, R) x = x.permute(0, 3, 1, 2) else: x = torch.matmul(x, R) return x class OFTInfModule(OFTModule): def __init__( self, oft_name, org_module: torch.nn.Module, multiplier=1.0, dim=4, alpha=1, **kwargs, ): # no dropout for inference super().__init__(oft_name, org_module, multiplier, dim, alpha) self.enabled = True self.network: OFTNetwork = None def set_network(self, network): self.network = network def forward(self, x, scale=None): if not self.enabled: return self.org_forward(x) return super().forward(x, scale) def merge_to(self, multiplier=None, sign=1): R = self.get_weight(multiplier) * sign # get org weight org_sd = self.org_module[0].state_dict() org_weight = org_sd["weight"] R = R.to(org_weight.device, dtype=org_weight.dtype) if org_weight.dim() == 4: weight = torch.einsum("oihw, op -> pihw", org_weight, R) else: weight = torch.einsum("oi, op -> pi", org_weight, R) # set weight to org_module org_sd["weight"] = weight self.org_module[0].load_state_dict(org_sd) def create_network( multiplier: float, network_dim: Optional[int], network_alpha: Optional[float], vae: AutoencoderKL, text_encoder: Union[CLIPTextModel, List[CLIPTextModel]], unet, neuron_dropout: Optional[float] = None, **kwargs, ): if network_dim is None: network_dim = 4 # default if network_alpha is None: network_alpha = 1.0 enable_all_linear = kwargs.get("enable_all_linear", None) enable_conv = kwargs.get("enable_conv", None) if enable_all_linear is not None: enable_all_linear = bool(enable_all_linear) if enable_conv is not None: enable_conv = bool(enable_conv) network = OFTNetwork( text_encoder, unet, multiplier=multiplier, dim=network_dim, alpha=network_alpha, enable_all_linear=enable_all_linear, enable_conv=enable_conv, varbose=True, ) return network # Create network from weights for inference, weights are not loaded here (because can be merged) def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs): if weights_sd is None: if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file, safe_open weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") # check dim, alpha and if weights have for conv2d dim = None alpha = None has_conv2d = None all_linear = None for name, param in weights_sd.items(): if name.endswith(".alpha"): if alpha is None: alpha = param.item() else: if dim is None: dim = param.size()[0] if has_conv2d is None and param.dim() == 4: has_conv2d = True if all_linear is None: if param.dim() == 3 and "attn" not in name: all_linear = True if dim is not None and alpha is not None and has_conv2d is not None: break if has_conv2d is None: has_conv2d = False if all_linear is None: all_linear = False module_class = OFTInfModule if for_inference else OFTModule network = OFTNetwork( text_encoder, unet, multiplier=multiplier, dim=dim, alpha=alpha, enable_all_linear=all_linear, enable_conv=has_conv2d, module_class=module_class, ) return network, weights_sd class OFTNetwork(torch.nn.Module): UNET_TARGET_REPLACE_MODULE_ATTN_ONLY = ["CrossAttention"] UNET_TARGET_REPLACE_MODULE_ALL_LINEAR = ["Transformer2DModel"] UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] OFT_PREFIX_UNET = "oft_unet" # これ変えないほうがいいかな def __init__( self, text_encoder: Union[List[CLIPTextModel], CLIPTextModel], unet, multiplier: float = 1.0, dim: int = 4, alpha: float = 1, enable_all_linear: Optional[bool] = False, enable_conv: Optional[bool] = False, module_class: Type[object] = OFTModule, varbose: Optional[bool] = False, ) -> None: super().__init__() self.multiplier = multiplier self.dim = dim self.alpha = alpha print( f"create OFT network. num blocks: {self.dim}, constraint: {self.alpha}, multiplier: {self.multiplier}, enable_conv: {enable_conv}" ) # create module instances def create_modules( root_module: torch.nn.Module, target_replace_modules: List[torch.nn.Module], ) -> List[OFTModule]: prefix = self.OFT_PREFIX_UNET ofts = [] for name, module in root_module.named_modules(): if module.__class__.__name__ in target_replace_modules: for child_name, child_module in module.named_modules(): is_linear = "Linear" in child_module.__class__.__name__ is_conv2d = "Conv2d" in child_module.__class__.__name__ is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) if is_linear or is_conv2d_1x1 or (is_conv2d and enable_conv): oft_name = prefix + "." + name + "." + child_name oft_name = oft_name.replace(".", "_") # print(oft_name) oft = module_class( oft_name, child_module, self.multiplier, dim, alpha, ) ofts.append(oft) return ofts # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights if enable_all_linear: target_modules = OFTNetwork.UNET_TARGET_REPLACE_MODULE_ALL_LINEAR else: target_modules = OFTNetwork.UNET_TARGET_REPLACE_MODULE_ATTN_ONLY if enable_conv: target_modules += OFTNetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 self.unet_ofts: List[OFTModule] = create_modules(unet, target_modules) print(f"create OFT for U-Net: {len(self.unet_ofts)} modules.") # assertion names = set() for oft in self.unet_ofts: assert oft.oft_name not in names, f"duplicated oft name: {oft.oft_name}" names.add(oft.oft_name) def set_multiplier(self, multiplier): self.multiplier = multiplier for oft in self.unet_ofts: oft.multiplier = self.multiplier def load_weights(self, file): if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") info = self.load_state_dict(weights_sd, False) return info def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True): assert apply_unet, "apply_unet must be True" for oft in self.unet_ofts: oft.apply_to() self.add_module(oft.oft_name, oft) # マージできるかどうかを返す def is_mergeable(self): return True # TODO refactor to common function with apply_to def merge_to(self, text_encoder, unet, weights_sd, dtype, device): print("enable OFT for U-Net") for oft in self.unet_ofts: sd_for_lora = {} for key in weights_sd.keys(): if key.startswith(oft.oft_name): sd_for_lora[key[len(oft.oft_name) + 1 :]] = weights_sd[key] oft.load_state_dict(sd_for_lora, False) oft.merge_to() print(f"weights are merged") # 二つのText Encoderに別々の学習率を設定できるようにするといいかも def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): self.requires_grad_(True) all_params = [] def enumerate_params(ofts): params = [] for oft in ofts: params.extend(oft.parameters()) # print num of params num_params = 0 for p in params: num_params += p.numel() print(f"OFT params: {num_params}") return params param_data = {"params": enumerate_params(self.unet_ofts)} if unet_lr is not None: param_data["lr"] = unet_lr all_params.append(param_data) return all_params def enable_gradient_checkpointing(self): # not supported pass def prepare_grad_etc(self, text_encoder, unet): self.requires_grad_(True) def on_epoch_start(self, text_encoder, unet): self.train() def get_trainable_params(self): return self.parameters() def save_weights(self, file, dtype, metadata): if metadata is not None and len(metadata) == 0: metadata = None state_dict = self.state_dict() if dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(dtype) state_dict[key] = v if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import save_file from library import train_util # Precalculate model hashes to save time on indexing if metadata is None: metadata = {} model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash save_file(state_dict, file, metadata) else: torch.save(state_dict, file) def backup_weights(self): # 重みのバックアップを行う ofts: List[OFTInfModule] = self.unet_ofts for oft in ofts: org_module = oft.org_module[0] if not hasattr(org_module, "_lora_org_weight"): sd = org_module.state_dict() org_module._lora_org_weight = sd["weight"].detach().clone() org_module._lora_restored = True def restore_weights(self): # 重みのリストアを行う ofts: List[OFTInfModule] = self.unet_ofts for oft in ofts: org_module = oft.org_module[0] if not org_module._lora_restored: sd = org_module.state_dict() sd["weight"] = org_module._lora_org_weight org_module.load_state_dict(sd) org_module._lora_restored = True def pre_calculation(self): # 事前計算を行う ofts: List[OFTInfModule] = self.unet_ofts for oft in ofts: org_module = oft.org_module[0] oft.merge_to() # sd = org_module.state_dict() # org_weight = sd["weight"] # lora_weight = oft.get_weight().to(org_weight.device, dtype=org_weight.dtype) # sd["weight"] = org_weight + lora_weight # assert sd["weight"].shape == org_weight.shape # org_module.load_state_dict(sd) org_module._lora_restored = False oft.enabled = False